Решение. На первое место можно поставить любую из четырех четных цифр (трехзначное число не может начинаться нулем). На второе место можно поставить любую из четырех оставшихся цифр (так как повторяться цифры не могут). Значит, первые два места могут быть заняты шестнадцатью способами: 20 _, 24 _, 26_, 28 _; 40_ , 42_, 46 _, 48_; 60_, 62_, 64_, 68 _; 80_ , 82_, 84_, 86_. В любом из этих случаев третье место можно занять любой из трех оставшихся цифр. Например, в случае 20_ третье место можно занять цифрами 4, 6 или 8. Значит, всего чисел получится 48. Кратко это решение можно высказать так: первой может быть любая из четырех цифр, второй – любая из четырех оставшихся цифр, третьей – любая из трех оставшихся цифр; значит, всего таких чисел 4 x 4 x 3 = 48.
Ответ: 48 чисел.
Решение. Нарисуем два пересекающиеся круга. Левый пусть обозначает ушастых щенят, правый кусачих, а в общей части будут ушастые и кусачие одновременно. Так как ушастых 8, а всего щенят 12, то в самой правой части рисунка находятся 4 щенка – не ушастые, но кусачие. Так как кусачих 9, а всего щенят 12, то в самой левой части рисунка находятся 3 щенка – не ушастые, но кусачие. Значит, в центральной части рисунка находятся 5 щенков – ушастых и кусачих одновременно.
Можно оформить это решение по вопросам.
Сколько щенят – не ушастые? 12 – 8 = 4.
Сколько щенят – не кусачие? 12 – 9 = 3.
Сколько щенят обладает только одним из этих качеств (только кусачие или только ушастые)? 4 + 3 = 7.
Сколько щенят обладают обоими качествами (кусачие и ушастые одновременно)? 12 – 7 = 5.
Ответ: 5.
Ответ: 48 чисел.
Можно оформить это решение по вопросам.
Сколько щенят – не ушастые? 12 – 8 = 4.
Сколько щенят – не кусачие? 12 – 9 = 3.
Сколько щенят обладает только одним из этих качеств (только кусачие или только ушастые)? 4 + 3 = 7.
Сколько щенят обладают обоими качествами (кусачие и ушастые одновременно)? 12 – 7 = 5.
Ответ: 5.