Ответ: 9 следов Фёдора. Решение. Так как они начали с одного и того же места, то первый след Фёдора. Дальше два следа Матроскина, потом снова Фёдора (поверх следа Матроскина) и так далее. Поскольку всего следов Матроскина 17, то это 8 пар и еще один след в конце. Это последний след на дорожке, после него нет ни следа Матроскина, ни следа Фёдора. А 8 пар следов Матроскина разделены следами Федора. Значит, их 9.