В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
soldatgtr
soldatgtr
01.05.2023 21:10 •  Другие предметы

Три медианы треугольника пересекаются в одной точке, и каждая из них делится точкой пересечения в отношении 2 : 1, если считать от вершины.

Показать ответ
Ответ:
MrKepka
MrKepka
17.04.2019 03:40
Пусть медианы MB и PA треугольника MNP пересекаются в точке O
Найдем середины C и D отрезков ОР и OM и рассмотрим четырехугольник ABCD. Его стороны AB и DC параллельны и равны как средние линии треугольников MNP и MOP с общей стороной MP. Поэтому четырехугольник ABCD — параллелограмм.
Поскольку диагонали параллелограмма точкой пересечения делятся пополам, то OD = OB. Учитывая, что D — середина отрезка OM, получаем MD = OD = OB. Значит, МО:ОБ = 2:1. Так же РО:ОА= 2:1.
Остается доказать, что третья медиана NE проходит через точку O. Пусть медианы NE и MB пересекаются в точке O1 (рис. 136). Тогда по доказанному MO1:'O1B = 2- 1. Учитывая, что и МО ': ОВ = 2:1, заключаем, что точки O1 и O делят отрезок MB в одном и том же отношении. А это значит, что точка O1 совпадает с точкой O. Значит, медиана NE проходит через точку O пересечения медиан MB и PA.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота