В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

У трикутнику ABC відомо, що ∟C = 90°, ∟A = 67,5°, ∟B = 22,5°, СК - бісектриса трикутника АВС, СМ - бісектриса трикутника ВСК (рис. 174). Доведіть, що точка М - середина відрізка АВ

Показать ответ
Ответ:
Nаstуа23
Nаstуа23
17.04.2019 01:10
Відповідь:

Доведения: ∟ACK = ∟BCK = 1/2∟C = 90° : 2 = 45° (CK - бісектриса ∆АВС).
∟BCM = ∟MCK = 1/2∟BCK = 45° : 2 = 22,5° (CM - бісектриса ∆ABCK).
Розглянемо ∆BCM. ∟CBM = ∟BCM = 22,5°, тоді ∆ВСМ - рівнобедрений,
з цього випливає, що ВМ = СМ.
Розглянемо ∆МАС.
∟MCA = ∟MCK + ∟KCA, ∟MCA = 22,5° + 45° = 67,5° = ∟MAC, тоді
∆МСА - рівнобедрений, з цього випливає, що СМ = МА.
Так як ВМ = СМ, СМ = МА, то ВМ = MA, т. М - середина АВ.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота