В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
daqqwe
daqqwe
30.11.2022 21:52 •  Другие предметы

Верны ли утверждения? А) Прямая, проходящая через центр круга перпендикулярна двум радиусам В) Прямая, проходящая через

Показать ответ
Ответ:
ernarsailaubek
ernarsailaubek
17.04.2019 00:40
Правильные ответы к тесту выделены
Тест  прошел проверку
ставим +1 к ответу)
0,0(0 оценок)
Ответ:
belatarikova
belatarikova
22.01.2024 13:35
Центр круга, перпендикулярна одному из радиусов Верны ли утверждения? В) Прямая, проходящая через центр круга параллельна одной из хорд."

Для начала, давайте разберемся в определениях и свойствах круга, чтобы лучше понять, какие утверждения верны.

1. Центр круга: это точка, которая находится внутри круга и равноудалена от всех точек на окружности.

2. Радиус: это отрезок, соединяющий центр круга с точкой на окружности.

3. Хорда: это отрезок, соединяющий две точки на окружности.

Теперь приступим к решению утверждений.

Утверждение А) Прямая, проходящая через центр круга перпендикулярна двум радиусам.

Для начала докажем, что прямая, проходящая через центр круга, перпендикулярна радиусу.

Рассмотрим круг с центром O и радиусом r. Пусть M и N - две точки на окружности круга, а O - центр. Проведем прямую, проходящую через O и M. Затем проведем прямую, параллельную M) и N, и проходящую через O.
Получаем прямоугольный треугольник OMR, где OM - радиус круга, RM - хорда и OR - прямая, проходящая через центр круга (радиус).

Так как PR || MN, а PN - высота прямоугольного треугольника, он делит сторону OR на две равные части (по свойству прямоугольного треугольника).
Таким образом, PR = RN.

Таким образом, мы доказали, что прямая, проходящая через центр круга, перпендикулярна радиусу.

Теперь рассмотрим утверждение В) Прямая, проходящая через центр круга параллельна одной из хорд.

Для начала докажем, что прямая, проходящая через центр круга, перпендикулярна хорде.

Рассмотрим круг с центром O и радиусом r. Пусть A и B - две точки на окружности круга, а O - центр. Проведем прямую, проходящую через O и A. Затем проведем прямую, параллельную AB, и проходящую через O.
Получаем прямоугольный треугольник OAR, где OA - радиус круга, RA - хорда и OR - прямая, проходящая через центр круга (радиус).

Так как RA || AB, а OB - высота прямоугольного треугольника, он делит сторону OR на две равные части (по свойству прямоугольного треугольника).
Таким образом, OR = RB.

Таким образом, мы доказали, что прямая, проходящая через центр круга, перпендикулярна хорде.

Затем покажем, что прямая, проходящая через центр круга, параллельна хорде.

Допустим, что прямая, проходящая через центр круга, не параллельна хорде. Тогда эта прямая пересечет хорду в точке P.

Рассмотрим круг с центром O и хордой AB. Проведем прямую, проходящую через O и P.

Так как OP перпендикулярна AB (по доказанному свойству), и OP пересекает AB в точке P, то OP является высотой прямоугольного треугольника OPA. Но это противоречит тому, что высота пересекает основание ниже его середины.

Таким образом, мы пришли к противоречию, и наше предположение неверно. Значит, прямая, проходящая через центр круга, параллельна хорде.

Таким образом, верны оба утверждения:

А) Прямая, проходящая через центр круга, перпендикулярна двум радиусам.

В) Прямая, проходящая через центр круга, параллельна одной из хорд.
0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота