В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
tinkimolko
tinkimolko
15.06.2020 13:40 •  Другие предметы

Which of the following statements about the broad network access feature of cloud computing are true? 1-Users can use purchased cloud computing resources through different terminals via internet.
2-Users can use purchased cloud computing resources at any time via internet.
3-Users can view the status of self-purchased cloud computing resources at any time via internet.
4-Users can use self-purchased cloud computing resources in different locations via internet.

Показать ответ
Ответ:
dxdarthur2001
dxdarthur2001
06.04.2022 11:52

Ну, мне лично кажется, что музыка-это состояние души, точнее ее песня. Существует много музыкальных направлений, и столько же поклонников. Для множества людей, музыка, в некотором смысле является психологом пережить ту или иную фазу настроения, выступает посредником в проявлении истинных эмоций, которые не нужно скрывать. По музыкальным предпочтениям можно даже охарактеризовать человека. Например: любители поп-музыки – очень общительны, а предпочитающие рок-музыку, обладают мягким характером. Классика, не очень востребована, однако ее слушают уверенные в себе, но при этом замкнутые люди.

0,0(0 оценок)
Ответ:
настя7596
настя7596
03.06.2021 15:25

Для кодирования информации в компьютере вместо привычной десятичной системы счисления используется двоичная система счисления.  

Двоичной системой счисления люди начали пользоваться очень давно. Древние племена Австралии и островов Полинезии использовали эту систему в быту. Так, полинезийцы передавали необходимую  информацию, выполняя два вида ударов по барабану: звонкий и глухой. Это было примитивное представление двоичной системы счисления.

Двоичной системой счисления называется позиционная система счисления с основанием  

2

.

Для записи чисел в ней использовали только две цифры:  

0

и  

1

.

Для обозначения системы счисления, в которой представляется число, используют нижний индекс, указывающий основание системы. Например,  

11011

2

—  число в двоичной системе счисления.

 

Цифры в двоичном числе являются коэффициентами его представления в виде суммы степеней с основанием  

2

, например:

 

101

2

=1⋅

2

2

+0⋅

2

1

+1⋅

2

0

.

 

В десятичной системе счисления это число будет выглядеть так:

 

101

2

=4+0+1=5

.

 

Для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на  

2

до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём десятичное число  

13

в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

 

 

Получили  

13

10

=

1101

2

.

Пример:

Если десятичное число достаточно большое, то более удобен следующий записи рассмотренного выше алгоритма:

 

224

112

56

28

14

7

3

1

0

0

0

0

0

1

1

1

 

224

10

=

11100000

2

.

Восьмеричной системой счисления называется позиционная система счисления с основанием  

8

.

 

Для записи чисел в восьмеричной системе счисления используются цифры:  

0

,  

1

,  

2

,  

3

,  

4

,  

5

,  

6

,  

7

.

Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём восьмеричное число  

15436

8

в десятичную систему счисления.  

15436

8

=1⋅

8

4

+5⋅

8

3

+4⋅

8

2

+3⋅

8

1

+6⋅

8

0

=

6942

10

Пример:

Переведём десятичное число  

94

в восьмеричную систему счисления.

 

 

94

10

=

136

8

Шестнадцатеричной системой счисления называется позиционная система счисления с основанием  

16

.

 

Для записи чисел в шестнадцатеричной системе счисления используются цифры:  

0

,  

1

,  

2

,  

3

,  

4

,  

5

,  

6

,  

7

,  

8

,  

9

и латинские буквы A, B, C, D, E, F. Буквы A, B, C, D, E, F имеют значения  

10

10

,  

11

10

,  

12

10

,  

13

10

,  

14

10

,  

15

10

.

Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.

Для перевода целого десятичного числа в шестнадцатеричную  систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на  

16

до тех пор, пока не получим частное, равное нулю. Исходное число в системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример:

Переведём шестнадцатеричное число  

2

A7

в десятичное. В соответствии с вышеуказанными правилом представим его в виде суммы степеней с основанием  

16

:

2A7

16

=2⋅

16

2

+10⋅

16

1

+7⋅

16

0

=512+160+7=679

.

Пример:

Переведём десятичное число  

158

в шестнадцатеричную систему счисления.

 

 

158

10

=

9E

16

.

Для перевода числа из любой позиционной системы счисления в десятичную необходима использовать развернутую формулу числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами.

Для перевода целых чисел десятичной системы счисления в число любой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы счисление, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Объяснение:

0,0(0 оценок)
Популярные вопросы: Другие предметы
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота