Допустим, что предприниматель И. В. Симонов одолжил сумму денег на развитие бизнеса, ежегодно его капитал возрастает на 5%, через, сколько лет он заработает столько денег, сколько одолжил на развитие бизнеса?
Для решения поставленной задачи необходимо использовать формулу сложных процентов:
, Примем долг за a, тогда А = 2а, p = 5 и x – неизвестно. Сделав подстановку в формулу и сократив на а, получим: или Чтобы решить это показательное уравнение прологарифмируем его: x* lg 1,05 = lg 2 , откуда . Найдя по таблице lg 2 и lg 1,05, получим Следовательно, Симонову потребуется 14 лет, чтобы его капитал стал равен одолженной сумме.
Показательная функция в банковских расчетах
Показательная функция применяется в банковских расчетах при вложении денег на счет и начислением процентов. В разных банках существуют в зависимости от условий разные виды вклада.
Вклад (депозит) — сумма средств, которую банк принимает от клиента на определенный или неопределенный срок.
Годовой процент — сумма средств, которую клиент получает от банка за хранение денег у этого банка ежегодно.
Рассмотрим следующий пример.
Схема начисления процентов: клиент кладет в банк некую сумму, рассмотрим вклад размером 1000 р. и годовым процентом 10% на 10 лет.
За первый год клиенту начисляется 10% от 1000 р. то есть 100 р. тогда сумма к началу второго года хранения денег в банке равна 1100 р. Теперь процент будет браться от 1100 р., к концу второго года сумма вклада будет равна 1210 р. и так далее. Тогда получим формулу:
Итоговая сумма= вклад * во сколько раз увеличится вклад за год в степени равной количеству лет
S — итоговая сумма, v — вклад, a — во сколько раз увеличился вклад за год, a = (100 + процент)/100, 100 — вклад в процентах, c —процент, p — количество лет.
Логарифмическая функция в экономике
Допустим, что предприниматель И. В. Симонов одолжил сумму денег на развитие бизнеса, ежегодно его капитал возрастает на 5%, через, сколько лет он заработает столько денег, сколько одолжил на развитие бизнеса?
Для решения поставленной задачи необходимо использовать формулу сложных процентов:
, Примем долг за a, тогда А = 2а, p = 5 и x – неизвестно. Сделав подстановку в формулу и сократив на а, получим: или Чтобы решить это показательное уравнение прологарифмируем его: x* lg 1,05 = lg 2 , откуда . Найдя по таблице lg 2 и lg 1,05, получим Следовательно, Симонову потребуется 14 лет, чтобы его капитал стал равен одолженной сумме.
Показательная функция в банковских расчетах
Показательная функция применяется в банковских расчетах при вложении денег на счет и начислением процентов. В разных банках существуют в зависимости от условий разные виды вклада.
Вклад (депозит) — сумма средств, которую банк принимает от клиента на определенный или неопределенный срок.
Годовой процент — сумма средств, которую клиент получает от банка за хранение денег у этого банка ежегодно.
Рассмотрим следующий пример.
Схема начисления процентов: клиент кладет в банк некую сумму, рассмотрим вклад размером 1000 р. и годовым процентом 10% на 10 лет.
За первый год клиенту начисляется 10% от 1000 р. то есть 100 р. тогда сумма к началу второго года хранения денег в банке равна 1100 р. Теперь процент будет браться от 1100 р., к концу второго года сумма вклада будет равна 1210 р. и так далее. Тогда получим формулу:
Итоговая сумма= вклад * во сколько раз увеличится вклад за год в степени равной количеству лет
S — итоговая сумма, v — вклад, a — во сколько раз увеличился вклад за год, a = (100 + процент)/100, 100 — вклад в процентах, c —процент, p — количество лет.
сумма на счете.
Рассмотрим эту формулу в нашем случае:
, таким образом
клиент возьмет из банка 2593 р.
Объяснение: