1. Чему равна масса тела, на которое действует сила тяжести 200 Н? 2. На тело вдоль одной прямой действуют две силы 35 Н и 20 Н. Чему равна равнодействующая этих сил? Рассмотрите все варианты, изобразите силы в масштабе 1 клетка - 5Н.
3. Найдите объем ледяной глыбы, на которую действует сила тяжести, равная 27кН ( р льда 900кг/м3).
4. На тело действуют две силы 300Н и 500Н, направленные вдоль одной прямой в одну сторону. Определите равнодействующую сил.
5. Определите вес мраморной плиты длинной 50 см, шириной 20 см и высотой 10 см (плотность мрамора 2700 кг/м3).
При скатывании диска массой m с с высоты h его потенциальная энергия mgh преобразовывается в кинетическую энергию поступательного и вращательного движения: mgh=mv^2/2+Jw^2/2, где J - момент инерции диска. Длина наклонной плоскости l связана с её высотой h соотношением l=h/sin(a), линейная скорость v связана с угловой скоростью w соотношением v=wR, где R - радиус диска. Тогда mglsin(a)=v^2/2*(m+J/R^2). Так как движение тела происходит лишь под действием силы тяжести, то оно равноускоренное. Тогда v=at и l=at^2/2. Отсюда ускорение a=mgsin(a)/(m+J/R^2). Момент инерции диска J=mR^2/2. Тогда ускорение a=mgsin(a)/(3m/2)=2gsin(a)/3
Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям: . Это выражение также можно использовать для определения индукции магнитного поля: . Величину, равную произведению , называют магнитным моментом контура Рт.
Объяснение:
вращающий момент М , зависящий как от свойств магнитного поля в данной точке, так и от свойств контура. Вращающий момент определяется векторным произведением магнитного момента на вектор индукции магнитного поля
Вращающий момент – псевдовектор, направленный вдоль оси вращения таким образом, что с его острия виден переход от вектора магнитного момента к вектору индукции магнитного поля против часовой стрелки. Скалярное значение вращающего момента , где α – угол между и . При α=90° вращающий момент принимает максимальное значение . При α=0° или α=180° вращающий момент М=0.
Длина наклонной плоскости l связана с её высотой h соотношением l=h/sin(a), линейная скорость v связана с угловой скоростью w соотношением v=wR, где R - радиус диска.
Тогда mglsin(a)=v^2/2*(m+J/R^2). Так как движение тела происходит лишь под действием силы тяжести, то оно равноускоренное. Тогда v=at и l=at^2/2. Отсюда ускорение a=mgsin(a)/(m+J/R^2). Момент инерции диска J=mR^2/2. Тогда ускорение a=mgsin(a)/(3m/2)=2gsin(a)/3
Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям: . Это выражение также можно использовать для определения индукции магнитного поля: . Величину, равную произведению , называют магнитным моментом контура Рт.
Объяснение:
вращающий момент М , зависящий как от свойств магнитного поля в данной точке, так и от свойств контура. Вращающий момент определяется векторным произведением магнитного момента на вектор индукции магнитного поляВращающий момент – псевдовектор, направленный вдоль оси вращения таким образом, что с его острия виден переход от вектора магнитного момента к вектору индукции магнитного поля против часовой стрелки. Скалярное значение вращающего момента , где α – угол между и . При α=90° вращающий момент принимает максимальное значение . При α=0° или α=180° вращающий момент М=0.