1. Длинное плечо рычага равно 6 м, а короткое 2 м Если на длинное плечо подействовать свой 10 H, какой тяжести тело можно
поднять при короткого плеча? (
Оeme: 30Н)
2. При неподвижного блока мальчик поднимает груз
вверх. Если вес мальчика равен 50 кг, определите максимальный вес
груза, который может поднять мальчик при блока? g 10
(Omsem. 500 H). ответ обоснуйте
3. При подъеме тела по наклонной плоскости совершили работу
20 Дж. При этом использовали механизм с КПД, равным so
Найдите полезную рабоry (Orosem l6Дж)
4. Прямоугольное тело имеет длину 6 см, ширину 8 см
Определите расстояние до центра тяжести от любого угла прямо-
угольника?
5. Из колодца поднимают ведро с водой. Обьем ведра 10л.
Радиус вала, на который наматывается трое. 10 см. радиус поворота
рукоятки 50 см. С какой силой нало юдействовать на рукоятку,
чтобы поднять воду? g=10 ответ он)
6. Под действием силы 15 Н rелю поднимают по наклоноіn tnoe-
кости. Найти КПД наклонной плоскости, если ее тела 16 н. высота
наклонной скокти 5 м, длина 64 м. (Ortiser 83,3%).
300м
Объяснение:
Граф. метод։
У нас на графике трапеция. Перемещение в данном случае равна площади под графиком(Если б скорость уходила бы в минус, тогда для рассчётов вектора перемещения нам понадобилось бы вычесть площадь минусовой части V). Площадь трапеции равна полусумме его оснований умноженное на её высоту.
⇒|S(вектор перемещения)| = = 300м
Анал. метод։
0) V₀ = 0м/c, V₁ = 6м/c, Δt = 30с
⇒ a₀ = (V₁-V₀)/Δt = 0.2м/c²
⇒ S₀ = a₀Δt²/2 = 90м
1) a₁ = 0м/c²
⇒ S₁ = V₁ × t₁ = 6 × 30 = 180м
2) V₁ = 6м/c V₂ = 0 Δt = 10с
⇒ a₂ = -0.6м/c²
⇒ S₂ = V₁×Δt + a₂Δt²/2 = V₁²/(2×a₂) = 30м
⇒ ∑S = 90 + 180 + 30 = 300м