В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
mlyz
mlyz
06.12.2021 21:17 •  Физика

1. Груз массой 4 кг медленно затаскивают по наклонно расположенной доске длиной 1,3 м на высоту 50 см. Груз тянут вверх с легкого прочного троса, который
составляет с наклонной плоскостью доски постоянный угол, в точности равный углу
наклона этой плоскости к горизонтали (см. рисунок). Коэффициент трения груза о доску
равен 0,4. Найдите величину силы натяжения троса F. Ускорение свободного падения
считать равным 10 м/с2.​


1. Груз массой 4 кг медленно затаскивают по наклонно расположенной доске длиной 1,3 м на высоту 50 с

Показать ответ
Ответ:
tural25
tural25
27.08.2020 09:50

Шаг 1. Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.

Шаг 2. Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).

Шаг 3. Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).

Таким образом, первые три шага решения задачи не зависят от того, каким графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом решения.

Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:

xп = 0 + 1 · t, xв = 20 - 3 · t.

Шаг 5 (аналитический). Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты

Объяснение:

Шаг 6 (аналитический). Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.

xп = 0 + 1 · t, (1) (закон движения пешехода)

xв = 20 - 3 · t, (2) (закон движения велосипедиста)

xп = xв. (3) (условие встречи пешехода и велосипедиста)

Шаг 7 (аналитический). Решение уравнений.

Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):

0 + 1 · t = 20 - 3 · t

Приведем подобные слагаемые и решим уравнение:

(1+3) · t = 20, t = 20/4 = 5 (с).

Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.

Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):

xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).

Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.

Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):

xв = 20 - 3 · tвстр = 20 - 3 · 5 = 5 (м).

Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.

Итоги

При аналитическом решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде

0,0(0 оценок)
Ответ:
Kate24512
Kate24512
31.03.2022 03:33
ЗАКОН АРХИМЕДА — закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

Если тело произвольной формы занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела — ("жидкости все равно на что давить").

Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V — тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т. е. pgV.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота