1) хлопчик проїхав на велосипеді 1 км а потім пройшов пішки ще 300м знайдіть середню швикість його руху, якщо час руху на велосипеді становив 600с , а пішки 100с
Рассмотрим обычную гуковскую пружину длины и жёсткостью деформацию которой обозначим, как Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:
Рассмотрим некоторое состояние [1] : и некоторое состояние [2] :
При вычитании этих уравнений получим, что для двух любых состояний верно, что:
Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.
В нашем случае, в состоянии равновесия – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:
– это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.
В то же время, при изменении положения груза на (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:
– это символизирует уменьшение положительной (направленной вверх) величины силы верхней пружины.
Общее изменение силы составит (сила тяжести не изменится):
При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:
(рассуждения для отрицательного смещения производятся аналогично)
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ВТОРОЙ
Пусть начальные растяжения пружин: (нижней), и (верхней). При этом положим вертикальное положение груза Ось направлена вверх.
Запишем закон сохранения энергии для произвольного положения груза:
Продифференцируем уравнение по времени:
Заметим, что в начальном положении, действие всех сил скомпенсировано:
(сила только верхней пружины положительна, т.к. направлена вверх)
Итак:
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ТРЕТИЙ
Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.
Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.
Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:
Рассмотрим обычную гуковскую пружину длины и жёсткостью деформацию которой обозначим, как Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:
Рассмотрим некоторое состояние [1] : и некоторое состояние [2] :
При вычитании этих уравнений получим, что для двух любых состояний верно, что:
Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.
В нашем случае, в состоянии равновесия – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:
– это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.
В то же время, при изменении положения груза на (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:
– это символизирует уменьшение положительной (направленной вверх) величины силы верхней пружины.
Общее изменение силы составит (сила тяжести не изменится):
При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:
(рассуждения для отрицательного смещения производятся аналогично)
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ВТОРОЙ
Пусть начальные растяжения пружин: (нижней), и (верхней). При этом положим вертикальное положение груза Ось направлена вверх.
Запишем закон сохранения энергии для произвольного положения груза:
Продифференцируем уравнение по времени:
Заметим, что в начальном положении, действие всех сил скомпенсировано:
(сила только верхней пружины положительна, т.к. направлена вверх)
Итак:
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ТРЕТИЙ
Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.
Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.
Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:
Рассмотрим обычную гуковскую пружину длины и жёсткостью деформацию которой обозначим, как Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:
Рассмотрим некоторое состояние [1] :
и некоторое состояние [2] :
При вычитании этих уравнений получим, что для двух любых состояний верно, что:
Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.
В нашем случае, в состоянии равновесия – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:
– это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.
В то же время, при изменении положения груза на (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:
– это символизирует уменьшение положительной (направленной вверх) величины силы верхней пружины.
Общее изменение силы составит (сила тяжести не изменится):
При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:
(рассуждения для отрицательного смещения производятся аналогично)
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ВТОРОЙ
Пусть начальные растяжения пружин: (нижней), и (верхней). При этом положим вертикальное положение груза Ось направлена вверх.
Запишем закон сохранения энергии для произвольного положения груза:
Продифференцируем уравнение по времени:
Заметим, что в начальном положении, действие всех сил скомпенсировано:
(сила только верхней пружины положительна, т.к. направлена вверх)
Итак:
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ТРЕТИЙ
Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.
Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.
Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:
Итак:
где – масса шарика.
ЧИСЛЕННЫЙ РАСЧЁТ :::
Н/см Н см Н м Н/м ;
Н/см Н см Н м Н/м ;
Допустим, масса шарика равна 1 кг. Тогда:
сек ;
Гц .
Рассмотрим обычную гуковскую пружину длины и жёсткостью деформацию которой обозначим, как Тогда возникающая сила упругости при её деформации будет выражаться обычным законом Гука:
Рассмотрим некоторое состояние [1] :
и некоторое состояние [2] :
При вычитании этих уравнений получим, что для двух любых состояний верно, что:
Т.е. изменение силы действующей со стороны любой гуковской пружины пропорционально изменению её деформации с противоположным знаком, через её собственную жёсткость.
В нашем случае, в состоянии равновесия – все силы, действующие на груз, взаимно скомпенсированы. При изменении положения груза на (т.е. вверх), растяжение нижней пружины (down) увеличится, а значит её сила, действующая на груз вниз – тоже увеличится по модулю. В проективном виде это изменение выразится, как:
– это символизирует увеличение отрицательной (направленной вниз) величины силы нижней пружины.
В то же время, при изменении положения груза на (вверх), растяжение верхней пружины (up) уменьшится, а значит её сила, действующая на груз вверх – тоже уменьшится по модулю. В проективном виде это изменение выразится, как:
– это символизирует уменьшение положительной (направленной вверх) величины силы верхней пружины.
Общее изменение силы составит (сила тяжести не изменится):
При этом, поскольку в начальном состоянии действие всех сил было скомпенсировано, т.е. равнодействующая была равна нулю, то, стало быть, при смещении груза на общая сила, действующая со стороны системы пружин – будет как раз и равна изменению действующих сил:
(рассуждения для отрицательного смещения производятся аналогично)
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ВТОРОЙ
Пусть начальные растяжения пружин: (нижней), и (верхней). При этом положим вертикальное положение груза Ось направлена вверх.
Запишем закон сохранения энергии для произвольного положения груза:
Продифференцируем уравнение по времени:
Заметим, что в начальном положении, действие всех сил скомпенсировано:
(сила только верхней пружины положительна, т.к. направлена вверх)
Итак:
А такая зависимость силы от смещения – эквивалентна системе груза и одной пружины с жёсткостью, равной сумме исходных жёсткостей. Стало быть:
где – масса шарика.
ТРЕТИЙ
Зафиксируем груз. Демонтируем нижнюю пружину. Прикрепим нижнюю пружину тоже свреху (!) груза, закрепив её на таком вертикальном расстоянии от груза, чтобы при отпускании груза – он остался бы в равновесии.
Сборка окажется эквивалентной, поскольку изначально верхняя пружина будет работать, как прежде. А перемещённая пружина при поднятии груза будет толкать груз вниз с таким же коэффициентом упругости, с которым она тянула бы его вниз, будучи снизу. С противоположным смещением – то же самое.
Обе пружины при такой эквивалентной сборке будут работать в параллельном режиме, как хорошо известно, с суммарной жёсткостью:
Итак:
где – масса шарика.
ЧИСЛЕННЫЙ РАСЧЁТ :::
Н/см Н см Н м Н/м ;
Н/см Н см Н м Н/м ;
Допустим, масса шарика равна 1 кг. Тогда:
сек ;
Гц .