1. Как изменится сила индукционного тока в замкнутом проводящем контуре, если такое же изменение магнитного потока произойдет за в 2 раза
меньшее время? Почему?
2. В колебательном контуре конденсатору емкостью 10 мкФ сообщили
заряд 20 мкКл, после чего в контуре начались свободные колебания. Какова
амплитуда тока при таких колебаниях, если индуктивность катушки в
контуре равна 20 мГн?
Модуль вектора магнитной индукции в центре кругового витка в вакууме
B = μ₀*Y/(2*R)
B₁ = 1,257*10⁻⁶ Гн/м * 2 А / 2R = 1,257*10⁻⁶ / R Гн*А/м
B₂ = 1,257*10⁻⁶ Гн/м * 3 А / 2R = 1,886*10⁻⁶ / R Гн*А/м
В условии задачи ничего не сказано о направлении круговых токов. В зависимости от направления токов угол между векторами В₁ и В₂ будет либо 45° либо 135 °.
Вектора В₁ и В₂ - стороны параллелограмма а его большая диагональ - и есть результирующий вектор В.
Модуль вектора В найдем из соотношения сторон параллелограмма и угла между ними.
В = корень(В₁² + В₂² + 2*В₁*В₂*cos(45 °)) = корень((1,257*10⁻⁶/R)² + (1,257*10⁻⁶ *3/2R)² + 2*1,257*10⁻⁶/R * 1,257*10⁻⁶ *3/2R *0,707) = 1,257*10⁻⁶ / R * корень(1 + (3/2)² + 2*(3/2) * 0,707) = 1,257*10⁻⁶ / R * корень(9,61) = 3,1 * 1,257*10⁻⁶ / R = 3,90*10⁻⁶ / R
Для окончательного вычисления необходим радиус кругового витка, а его почему-то нет.
Если бы у меня был такой микроскоп, то я не удержалась от наблюдений. Я думаю, что я увидела бы удивительный мир - мир молекул, которые постоянно движутся, движутся хаотически, сталкиваясь друг с другом. Я бы не удержалась и обязательно пронаблюдала бы движение, которое наблюдал ботаник Броун(начало 19 века). Я бы добавила в воду несколько спор растений и рассмотрела их движение под микроскопом. О, это было бы восхитительное движение! Оно напоминало бы мне ледовую арену с играющими в хоккей игроками, которые ударяют одновременно о шайбу клюшками! Да, молекулы бы ударяли о спору растения, приводя ее в движение. Молекулы двигались хаотически и спора двигалась бы также. Это было бы удивительное зрелище!
Как жаль, что это только мечтаХотя, очень часто мечты сбываются!