1 Какой была начальная скорость автомобиля , если он двигаясь с ускорением 1,5м/с путь 75 м и достиг скорости 15 м/с? 2 Какова высота ущелья, если камень брошенный со скоростью 10 м/с достиг дна ущелья через 5 с. Найти также скорость в момент удара. Падение считать свободным.
3 С горы длиной 40 м тело скатились за 5 с. С каким ускорением двигалось тело и какую скорость оно приобрело в конце горы?
4.Дано уравнение движения некоторого тела Х=6+8*t-7*t2 .Найти начальные координаты, начальную скорость, ускорения. Определить координату тела, скорость и пройденный путь через 8 с.
Дано:
m = 300 г = 0,3 кг
h = 1,5 м
k = 100 Н/м
g = 10 м/с²
A - ?
При решении задачи мы пренебрегаем массой чаши и пружины. Высота, с которой тело падает, на самом деле не h, а (h + L), где L - это длина пружины. Но пружина не может сжаться так, чтобы материально исчезнуть - она не может сжаться на всю свою длину. Она сожмётся на длину х. Тогда и возьмём в качестве нулевого потенциала тела ту точку, в которой пружина сожмётся на длину х. Тогда высота, с которой тело падает, будет равна (h + x). Теперь проанализируем превращения энергии. Силы трения воздуха не берём в расчёт. В начале тело обладает механической энергией, которая равна потенциальной энергии Еп:
Е = Еп = mg(h + x)
По закону сохранения механическая энергия остаётся неизменной. Когда тело касается чаши, оно обладает потенциальной энергией Еп' и кинетической энергией Ек, что в сумме даёт механическую энергию Е:
Е' = Еп' + Ек = mgx + mυ²/2
Нетрудно догадаться, что кинетическая энергия будет равна потенциальной при высоте h (разности Еп и Еп'):
Т.к. Е = Е', то:
mg(h + x) = mgx + mυ²/2
mgh + mgx = mgx + mυ²/2 | + (-mgx)
mgh = mυ²/2 => Eк = Еп - Еп'
Тогда механичесая энергия тела в момент его падения на чашу равна:
Е' = mgx + mgh
Эта энергия по мере движения тела до нулевого потенциала превращается в потенциальную энергию пружины Wп:
Е' = Wп
Wп = kx²/2 => mgx + mgh = kx²/2 - отнимаем от обеих частей уравнения значение потенциальной энергии пружины и решаем квадратное уравнение через дискриминант:
-kx²/2 + mgx + mgh = 0 | *(-1)
kx²/2 - mgx - mgh = 0
(k/2)*x² - mg*x - mgh = 0
D = b² - 4ac = (-mg)² - 4*(k/2)*(-mgh) = m²g² + 2kmgh = mg*(mg + 2kh)
x = (-b+/-√D) : (2a)
x1 = (mg + √(mg*(mg + 2kh))) : (2*(k/2)) = (mg + √(mg*(mg + 2kh))) : k
Второй корень получается бессмысленным, т.к. разность (mg - √(mg*(mg + 2kh))) получается отрицательной, ведь если представить, что mg = 1, то получится (1 - √(1*(1 + 2kh))) = 1 - 1*√(1 + 2kh) - из единицы вычитаем число, гораздо большее единицы, учитывая, что k и h > 1. Результат выходит отрицательным, а отрицательное значение x противоречит нашему уравнению для механической энергии - общая высота (h + x) не может быть < h. Значит, берём первый корень:
x = (mg + √(mg*(mg + 2kh))) : k
Но это не амплитуда колебаний. Амплитуда колебаний тела - это максимальное отклонение тела от положения равновесия. А положение равновесия тела будет при условии, что сила упругости равна весу тела:
Fупр = Р, т.е.:
kΔx = mg - таким образом, положение равновесия определяется сжатием пружины на определённую длину Δх. А ведь тело падало на пружину, которая находилась в свободном состоянии. Значит найденный корень - это не амплитуда. Тогда, если при падении тела пружина от свободного состояния сжалась на длину x, а при равновесии она сжимается на длину Δх, то надо просто отнять второе от первого - разность (x - Δx) и будет являться амплитудой:
kΔx = mg => Δx = mg/k
А = x - Δx = ((mg + √(mg*(mg + 2kh))) : k) - mg/k = mg/k + (√(mg*(mg + 2kh)))/k - mg/k = √(mg*(mg + 2kh))/k = √(m²g² + 2mgkh)/k = √(0,3²*10² + 2*0,3*10*100*1,5)/100 = √909/100 = 0,301496... = приблизительно 30,15 см
Можно получить такой же результат по-другому - через теорему об изменении кинетической энергии (сумма работ всех действующих сил на тело или систему тел равна изменению кинетической энергии тела или системы тел). За нулевой потенциал возьмём чашу пружины, тогда механическая энергия тела будет равна его потенциальной на высоте h. При падении тело будет иметь только кинетическую энергию, т.е.:
Е = Еп, но т.к. потенциальная перетекает в кинетическую, то Е' = Ек, а т.к. по закону сохранения энергии Е = Е', то Еп = Ек.
Ну а дальше кинетическая энергия изменяется до нуля, а изменяют её средняя сила упругости, работа которой отрицательна и равна:
A1 = Fупр(cp)*s = -(kx1 + kx2)/2*(x2 - x1) = -(k/2)*(x2 + x1)*(x2 - x1) = -(k/2)*(x2² - x1²), т.к. x1 = 0 (в этой точке сила ещё не совершала работы), то x2 = x и => А1 = -kx²/2,
и сила тяжести, работа которой положительна и равна:
А2 = mg*(x2 - x1) = mgx
Тогда выходит:
ΣА = ΔЕк = Ек2 - Ек1 = 0 - Ек1 = - Ек1
ΣA = A1 + A2 = -kx²/2 + mgx
Ек1 = Ек = Еп = mgh =>
=> -kx²/2 + mgx = - mgh
-kx²/2 + mgx + mgh = 0 | *(-1)
kx²/2 - mgx - mgh = 0 - то же самое квадратное уравнение.
ответ: приблизительно 30,15 см.
Вариант 1: вторая стрела вылетает из арбалета с той же скоростью, что и первая.
Дано:
V = 90 м/с
m₂ = 2m₁
g ≈ 10 м/с²
Найти: h₂ - ?
По закону сохранения энергии:
2m₁V²/2 = 2m₁gh₂
V²/2 = gh₂
h₂ = V²/2g
h₂ = (3600 м²/с²)/(2×10 м/с²) = 180 м
Вариант 2: энергия арбалета постоянна.
Дано:
V₁ = 90 м/с
m₂ = 2m₁
g ≈ 10 м/с²
Найти: h₂ - ?
Т.к. энергия арбалета неизменна, то Ек₁ = Ек₂
m₁V₁²/2 = 2m₁V₂²/2
m₁V₁²/2 = m₁V₂²
V₂ = √(m₁V₁²/2m₁) = √(V₁²/2)
V₂ = √(3600 м²/с²/2) = √1800 ≈ 42,4 м/с
По закону сохранения энергии:
2m₁V₂²/2 = 2m₁gh₂
V₂²/2 = gh₂
h₂ = V₂²/2g
h₂ = (42,4 м/с)²/(2×10 м/с²) ≈ 90 м
Объяснение: