1.Маленькие одинаковые капли ртути заряжены одноименно до потенциала ф каждая, Определите потенциал большой капли, образовавшейся при слиянии n таких капель. (ответ: ф=∛n²*Ф₀) 2.Три конденсатора емкостью 12 мкФ рассчитаны на напряжение 600 В. Какие
емкости можно получить и каковы допустимые напряжения в каждом случае?
3.Заряженный конденсатор подключили параллельно к такому же незаряженному, Во сколько раз изменилась энергия поля?
4.Потенциалы шаров емкостью 6,0 и 9,0 пФ равны 2,0 - 10² и 8,0 • 10² В, соответственно. Найдите суммарный заряд обоих шаров. Определите потенциал шаров после соприкосновения.
(ответ: 8,4 *10⁻⁹ Кл; 560 B)
Объяснение:
Биологические процессы нужно понимать не только поверхностно, наблюдая за ними, но и достаточно глубоко. Механизм биологических процессов можно понять только на молекулярном и внутриклеточном уровне. Здесь зоологам и биологам не обойтись без знания физики и без физической аппаратуры, например электронных микроскопов, с которых была открыта структура ДНК. Также, например, процессы нервной деятельности по сути являются электромагнитными явлениями. Очень многие биологические процессы изучаются на клеточном уровне, а любой живой организм и процессы, происходящие в нем - физические процессы. Например, кровообращение, дыхание и прочее.
Положение материальной точки в пространстве задается радиусвектором r
r = xi + yj + zk ,
где i, j, k – единичные векторы направлений; x, y, z- координаты точки.
Средняя скорость перемещения
v = r/t,
где r – вектор перемещения точки за интервал времени t.
Средняя скорость движения
v = s/t,
где s – путь, пройденный точкой за интервал времени t.
Мгновенная скорость материальной точки
v = dr/dt = vxi + vyj + vzk,
где vx = dx/dt , vy = dy/dt , vz = dz/dt - проекции вектора скорости на оси
координат.
Модуль вектора скорости
v v v v .
2
z
2
y
2
x
Среднее ускорение материальной точки
a = v/t,
где v - приращение вектора скорости материальной точки за интервал
времени t..
Мгновенное ускорение материальной точки
a = dv/dt = axi + ayj + azk,
где ax = d vx /dt , ay = d vy /dt , az = d vz
/dt - проекции вектора ускорения на
оси координат.
Проекции вектора ускорения на касательную и нормаль к траектории
a = dv/dt, an = v
2
/R,
где v – модуль вектора скорости точки; R – радиус кривизны
траектории в данной точке.
Модуль вектора ускорения
a = a a a a a .
2
n
2 2
z
2
y
2
x
Путь, пройденный точкой
t
0
s vdt ,
где v - модуль вектора скорости точки.
Угловая скорость и угловое ускорение абсолютно твердого тела
= d/dt, = d/dt,
где d - вектор угла поворота абсолютно твердого тела относительно оси
вращения (d, , - аксиальные векторы, направленные вдоль оси
вращения).
Связь между линейными и угловыми величинами при вращении
абсолютно твердого тела:
v = r, an =
2R, a = R,
где r - радиус-вектор рассматриваемой точки абсолютно твердого тела
относительно произвольной точки на оси вращения; R - расстояние от
оси вращения до этой точки.
А - 1
Радиус-вектор частицы изменяется по закону r(t) = t
2
i + 2tj – k.
Найти: 1) вектор скорости v; 2) вектор ускорения a; 3) модуль вектора
скорости v в момент времени t = 2 с; 4) путь, пройденный телом за
первые 10 с.
Решение
По определению:
1) вектор скорости v = dr /dt = 2ti + 2j;
2) вектор ускорения a = dv/dt = 2i.
3) Так как v = vxi + vyj, то модуль вектора скорости v=
2
y
2
vx v .
В нашем случае
vx
2t; vy
2
, поэтому, при t = 2 с,
v= v v (2t) (2) 2 5 4,46 м/ с.
2 2 2
y
2
x
4) По определению пути
2
1
t
t
s vdt
, где t1 =0, t2 = 10 c, а
v 2 t 1
2
,
тогда путь за первые 10 с