1) на гладкой горизонтальной плоскости лежит стержень массой m и длиной l. в стержень ударяется шарик массой m, движущийся перпендику- лярно стержню. на каком расстоянии l от середины стержня должен про- изойти удар, чтобы угловая скорость вращения стержня была максималь- ной? удар считать абсолютно . 2) на гладкой горизонтальной поверхности лежит тонкий однородный стержень длиной l. по одному из концов стержня наносят горизонтальный удар в направлении, перпендикулярном стержню. на какое расстояние s сместится центр масс стержня за время его полного оборота?
Запишем законы:
сохранения испульса ЗСИ,
сохранения энергии ЗСЭ
и сохранения момента импульса ЗСМИ :
mvo = mv + MV – ЗСИ, где vo, v и V – начальная скорость шарика и конечные скорости шарика и центра масс стержня;
mvo²/2 = mv²/2 + MV²/2 + Jω²/2 – ЗСЭ, где ω – угловая скорость вращения стержня с моментом инерции J = ML²/12 ;
mrvo = mrv + Jω – ЗСМИ , где r – расстояние от середины стержня до точки удара;
Из ЗСМИ и ЗСМ:
MV = Jω/r ;
M²V² = J²ω²/r² ;
MV² = J²ω²/[Mr²] ;
Тогда можно переписать ЗСЭ и ЗСМИ так:
m ( vo² – v² ) = Jω² ( 1 + J/[Mr²] ) ; ЗСЭ *
m ( vo – v ) = Jω/r ; ЗСМИ *
Разделим:
vo + v = ωr ( 1 + J/[Mr²] ) ; || * m
Сложим с ЗСМИ * :
2mvo = mωr ( 1 + J/[Mr²] ) + Jω/r = ω ( mr ( 1 + J/[Mr²] ) + J/r ) =
= ω ( mr + ( 1 + m/M )J/r ) = ω ( mr + (M+m)L²/[12r] ) ;
ω(r) = 2vo/[ r + (1+M/m)L²/(12r) ] ;
Найдём экстремум ω(r) , решив уравнение: dω/dr = 0 ;
dω/dr = 2vo ( (1+M/m)L²/[12r²] – 1 ) / ( r + (1+M/m)L²/[12r] )² = 0 ;
Ясно, что при r² < (1+M/m)L²/12 : ω(r) – растёт, а затем – падает.
Итак: r(ωmax) = L/2 √[(1+M/m)/3] ) ;
Что верно пока соотношения масс M ≤ 2m, и если M=2m то r(ωmax) = L/2,
т.е. шарик при таком соотношени должен попасть в конец стержня.
Если же M > 2m, то, пскольку r не может быть больше L/2, то
значит, r(ωmax) = L/2 ;
ОТВЕТ:
Если M ≤ 2m, то r(ωmax) = L/2 √[(1+M/m)/3] ) ;
Если M ≥ 2m, то r(ωmax) = L/2 ;
2)
Из полученного импульса p легко найти скорость центра масс:
p = mv;
v = p/m ;
Уравнение движения центра масс S(t) = vt = [p/m] t ; [1]
Стержень получает момент импульса относительно центар масс – pL/2, откуда легко найти угловую скорость ω :
pL/2 = Jω – где J = mL²/12 – момент инерции стержня относительно центра масс ;
ω = pL/[2J] = 6p/[mL] ;
Уравнение вращения φ(t) = ωt = [6p/mL] t ; [2]
Делим [1] на [2] и получаем:
S(t)/φ(t) = [p/m]/[6p/mL] = L/6 ;
S(φ) = Lφ/6 ;
При полном обороте φ = 2π ;
S(2π) = πL/3 ;
ОТВЕТ: S(2π) = [π/3] L .