1.Объясните, почему движется камень, почему он все-таки останавливается. 2. Ребенок прыгает с нижней ступени лестницы, но отказывается делать это с верхней ступени. Почему опасно спрыгивать с большой высоты? Что в этом случае движется по инерции?
Воспользуемся теоремой об изменении кинетической энергии:
∑A = ΔEк
Cумма работ всех сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).
В нашей задаче тело - это воздух, вернее, множество молекул воздуха. Опустим взаимодействия между молекулами и предположим, что всю работу, которая идёт на изменение их кинетической энергии от какого-то начального значения до какого-то максимального, совершает только вентилятор. То есть:
А_вентилятора = Ек_max - Eк₀
Но, вообще-то, нам неважно, какой была энергия молекул и какой она стала. Главное, что она увеличилась. Мы даже можем для удобства считать, что Eк₀ = 0, а Ек_max - просто какая-то Eк, которая больше нуля. Поэтому условимся, что работа вентилятора равна какой-то кинетической энергии воздушной массы:
А = Ек
Тогда работа за секунду (мощность вентилятора) равна:
N = А/t = Ек/t = mυ²/2 - кинетической энергии воздуха массой m, то есть такого количества воздуха, который вентилятор перегоняет за секунду.
С другой стороны мы можем представить это количество воздуха в виде цилиндра объёмом V, который за секунду пролетает сквозь отверстие диаметром, равным диаметру вентилятора (см. рисунок). Длина этого цилиндра равна расстоянию, которое должен преодолеть объём воздуха за одну секунду. Следовательно, длина равна произведению скорости и времени. А объём цилиндра, как известно, это произведение площади основания и длины.
Выходит:
V = S*υ*t = S*υ*1 = S*υ
Мы знаем, что объём, умноженный на плотность, равен массе:
ρ*V = m =>
m = ρ*S*υ
Если количество воздуха, прогоняемого за секунду, увеличить в 2 раза, то:
2m = 2*(ρ*S*υ)
Т.к. плотность воздуха постоянна, диаметр вентилятора - тоже (ведь S = πd²/4, и если d = const, то S = const), то очевидно, что при увеличении потока в 2 раза, в 2 раза увеличится его скорость:
2m = ρ*S*(2υ)
Тогда мощность станет равной:
N' = 2m*(2υ)²/2 = 8mυ²/2
Поделим эту мощность на первоначальную и узнаем ответ на вопрос:
N'/N = (8mυ²/2) : (mυ²/2) = 8 - в такое количество раз необходимо увеличить мощность вентилятора, чтобы за то же самое время он прогонял в 2 раза больше воздуха.
Это удобно, если тело имеет неправильную форму, что не позволяет измерить объем при математических формул.
0
Объяснение:
измерения объема тела с мензурки основан на том, что при погружении тела в жидкость объем жидкости с погруженным в нее телом увеличивается на величину объема тела. Этот хорош тем, что им можно измерять объем тел неправильной формы (например, камня или картофелины), которые нельзя найти, измеряя линейные размеры этих тел. Пользоваться мензуркой (измерительным цилиндром) вы уже учились входе первой лабораторной работы. Измерить же с ее объем тела очень просто. Важно только, чтобы тело было невелико, и его полностью можно было поместить в имеющуюся мензурку. Порядок измерения следующий:
а) в мензурку наливается вода в количестве достаточном для того, чтобы полностью погрузить в нее измеряемое тело. Объем записывается;
б) полностью погрузить тело в воду;
в) определить объем воды с погруженным в нее телом. Разница объемов воды до и после погружения в нее измеряемого тела и будет объемом тела.
К телу, объем которого вы будете измерять, лучше привязать нитку. С ее проще аккуратно опустить тело в воду, а затем и извлечь из мензурки. Если тело плавает в воде нужно полностью погрузить его в воду при карандаша, спицы или проволоки. Иначе вы измерите только объем той части тела, которая находится под водой.
Воспользуемся теоремой об изменении кинетической энергии:
∑A = ΔEк
Cумма работ всех сил, действующих на тело (или систему тел), равна изменению кинетической энергии этого тела (или системы тел).
В нашей задаче тело - это воздух, вернее, множество молекул воздуха. Опустим взаимодействия между молекулами и предположим, что всю работу, которая идёт на изменение их кинетической энергии от какого-то начального значения до какого-то максимального, совершает только вентилятор. То есть:
А_вентилятора = Ек_max - Eк₀
Но, вообще-то, нам неважно, какой была энергия молекул и какой она стала. Главное, что она увеличилась. Мы даже можем для удобства считать, что Eк₀ = 0, а Ек_max - просто какая-то Eк, которая больше нуля. Поэтому условимся, что работа вентилятора равна какой-то кинетической энергии воздушной массы:
А = Ек
Тогда работа за секунду (мощность вентилятора) равна:
N = А/t = Ек/t = mυ²/2 - кинетической энергии воздуха массой m, то есть такого количества воздуха, который вентилятор перегоняет за секунду.
С другой стороны мы можем представить это количество воздуха в виде цилиндра объёмом V, который за секунду пролетает сквозь отверстие диаметром, равным диаметру вентилятора (см. рисунок). Длина этого цилиндра равна расстоянию, которое должен преодолеть объём воздуха за одну секунду. Следовательно, длина равна произведению скорости и времени. А объём цилиндра, как известно, это произведение площади основания и длины.
Выходит:
V = S*υ*t = S*υ*1 = S*υ
Мы знаем, что объём, умноженный на плотность, равен массе:
ρ*V = m =>
m = ρ*S*υ
Если количество воздуха, прогоняемого за секунду, увеличить в 2 раза, то:
2m = 2*(ρ*S*υ)
Т.к. плотность воздуха постоянна, диаметр вентилятора - тоже (ведь S = πd²/4, и если d = const, то S = const), то очевидно, что при увеличении потока в 2 раза, в 2 раза увеличится его скорость:
2m = ρ*S*(2υ)
Тогда мощность станет равной:
N' = 2m*(2υ)²/2 = 8mυ²/2
Поделим эту мощность на первоначальную и узнаем ответ на вопрос:
N'/N = (8mυ²/2) : (mυ²/2) = 8 - в такое количество раз необходимо увеличить мощность вентилятора, чтобы за то же самое время он прогонял в 2 раза больше воздуха.
ответ: в 8 раз.
Это удобно, если тело имеет неправильную форму, что не позволяет измерить объем при математических формул.
0
Объяснение:
измерения объема тела с мензурки основан на том, что при погружении тела в жидкость объем жидкости с погруженным в нее телом увеличивается на величину объема тела. Этот хорош тем, что им можно измерять объем тел неправильной формы (например, камня или картофелины), которые нельзя найти, измеряя линейные размеры этих тел. Пользоваться мензуркой (измерительным цилиндром) вы уже учились входе первой лабораторной работы. Измерить же с ее объем тела очень просто. Важно только, чтобы тело было невелико, и его полностью можно было поместить в имеющуюся мензурку. Порядок измерения следующий:
а) в мензурку наливается вода в количестве достаточном для того, чтобы полностью погрузить в нее измеряемое тело. Объем записывается;
б) полностью погрузить тело в воду;
в) определить объем воды с погруженным в нее телом. Разница объемов воды до и после погружения в нее измеряемого тела и будет объемом тела.
К телу, объем которого вы будете измерять, лучше привязать нитку. С ее проще аккуратно опустить тело в воду, а затем и извлечь из мензурки. Если тело плавает в воде нужно полностью погрузить его в воду при карандаша, спицы или проволоки. Иначе вы измерите только объем той части тела, которая находится под водой.