1.при каком соотношении сил, действующих на автомобиль, он будет равнозамедленно двигаться по горизонтальному участку дороги с учётом сил сопротивления движению. 2.при каком соотношении сил, действующих на подводную лодку, она будет равноускоренно подниматься вертикально вверх с учётом сил сопротивления движению.
3.при каком соотношении сил, действующих на поплавок, он будет равноускоренно опускаться вертикально вниз при учёте сил сопротивления движению
ответ: m≈ 6,7*10^-27 кг.
Объяснение: По условию дано, что q (т.е.заряд) равен 2*e (где е - это элементарная частица). Тогда q= 2*|1,6*10^-19|Кл= 3,2*10^-19 Кл.
Как помнится, что работа электрического тока высчитывается по формуле: A= q*U. Значит считаем работу, A= (3,2*10^-19)Кл * 105 В= 3,36*10^-17 Дж. В данном случае, A=K (кинетическая энергия, т.к V1=0, а V2=1,0*10⁵м/с). K=m*V²/2, то из этой формулы выражаем m= 2*А/V²= (2*3,36*10^-17Дж)/(1,0*10⁵ м/с)= 6,72*10^-27 кг≈6,7*10^-27 кг. Если что-то следует объяснить более подробно, обращайся!
Дано:
q₁ = q₂ = q₃ = q₄ = Q = 10⁻⁷ Кл
Найти: q₀
Изобразим графически все заряды. Заряды в вершинах квадрата пронумеруем от 1 до 4, заряду в центре квадрата присвоим номер 0.
Если система находится в равновесии, то векторная сумма сил, действующих на каждый из зарядов равна 0. Заметим, что поскольку картинка симметрична относительно центрального заряда, то выбирать его для рассмотрения смысла нет. Выберем для рассмотрения один из зарядов, расположенных в вершинах квадрата, например, № 4.
Запишем:
Введем ось, на которую спроецируем эти силы. Удобно направить эту ось вдоль диагонали квадрата. Тогда, получим:
Введенный угол , так как диагональ квадрата делит его на два равных равнобедренных прямоугольных треугольника.
Подставляя значение косинуса этого угла и расписывая силы Кулона, получим:
Величина соответствует стороне квадрата:
Так как искомый заряд отрицательный, то:
q₀ ≈ -0.96·10⁻⁷ Кл
ответ: -0.96·10⁻⁷ Кл