1. Проводники длиной 30 см отталкиваются с силой 0,6 Н, находясь на расстоянии 50 см. Какова сила тока в первом проводнике, если во втором она равна 5 мА?
2. Какова сила тока в проводнике длиной 50 см, если он находится в магнитном поле индукцией 0,7 Тл и на него действует поле с силой 7 мН?
3. С какой скоростью протон вращается по окружности радиусом 2 мкм в магнитном поле с индукцией 0,8 мТл
Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
Важно отметить, что для того, чтобы закон был верен, необходимы:
1.точечность зарядов — то есть расстояние между заряженными телами много больше их размеров.
2.их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд.
3.взаимодействие в вакууме.
Однако, с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где F1,2— сила, с которой заряд 1 действует на заряд 2; q1,q2 — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности. Таким образом, закон указывает, что одноименные заряды отталкиваются (а разноименные – притягиваются) .
кг
м
°
кг
м/с
м/с
Найти:
Решение:
1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
При этом h2 аналогично h1 равен:
Перепишем ЗСЭ в виде:
Откуда cosβ:
°