1.резервуар с водой массой 2 кг при температуре 30 градусов и добавили воду массой 3 кг при температуре 40 градусов c какая температура установится в резервуаре в результате теплообмена удельная теплоемкость воды равна 4200 дж /кг к ответ дайте в градусах c.
2.какое количество теплоты выделяется при сгорании 1л бензина? плотность бензина 750 кг/м^3.
ответ дайте в мдж.
3.какое количество теплоты выделится при конденсации водяного пара массой 2кг при температуре t = 100c? удельная теплота парообразования воды r = 2,3 мдж(дробь / )кг. ответ дайте в кдж.
4.какое кол-во теплоты необходимо для того,чтобы полностью превратить в пар воду массой 5кг с начальной температурой 30c ?
удельная теплоёмкость воды c = 4200 дж (дробь / )кг * к. удельная теплота парообразования воды r = 2,3 мдж (дробь / ) кг. ответ дайте в кдж.
5.чему равна плотность водяного пара при относительной влажности 80% и температуре 20c ? плотность насыщенного пара ph = 17,3 г (дробь / )м^3 при температуре 20c. ответ дайте в г (дробь / )м^3.ответ дайте с точностью до сотых.
6.опредилить количество теплоты,необходимое для плавления 500г стали, взятого при температуре плавления.ответ дайте в кдж.
7.при кристаллизации вещества его средняя кинетическая энергия движения молекул (ek) и потенциальная энергия взаимодействия молекул (ep):
1)ek - уменьшается ep - увеличивается
2)ek - увеличивается ep - уменьшается
3)ek - не изменяется ep -уменьшается
4)ek - уменьшается ep- не изменяется
8.тепловой двигатель совершил работу 100дж,отдав при этом 25дж теплоты холодильнику.чему равен кпд двигателя? ответ дайте в %.
все надо сдать сегодня,т.к. завтра выходной. не хочу быть дворником!
Рассуждая аналогичным образом, получим, что расстояние, пройденное первым велосипедистом ДО встречи со вторым, S1 в точности равно расстоянию, пройденному вторым велосипедистом ПОСЛЕ встречи с первым, т. е. S1 = v1 × t1.
Теперь, учитывая тот факт, что оба выехали одновременно и, следовательно, до момента встречи находились в пути одинаковое время, можно сделать вывод: отношение их скоростей равно отношению пройденных ими расстояний. В самом деле: пусть они находились в пути какое-то время t. Тогда S1 = v1 × t, а S2 = v2 × t. S2/S1 = (v2 × t) / (v1 × t) = v2/v1.
И теперь мы получаем такое соотношение:
v2 / v1 = S2 / S1 = (v1 × t1) / (v2 × t2)
Умножим обе части этого уравнения на отношение v2/v1 и получим:
после сокращения дроби в правой части можно выразить отношение скоростей:
t1 = 54,5 мин t2 = 45 мин.
t2/t1 = 54,5 / 45 = 1,21.
Корень из 1,21 = 1,1
ответ: второй ехал в 1,1 раза быстрее первого.
Рассуждая аналогичным образом, получим, что расстояние, пройденное первым велосипедистом ДО встречи со вторым, S1 в точности равно расстоянию, пройденному вторым велосипедистом ПОСЛЕ встречи с первым, т. е. S1 = v1 × t1.
Теперь, учитывая тот факт, что оба выехали одновременно и, следовательно, до момента встречи находились в пути одинаковое время, можно сделать вывод: отношение их скоростей равно отношению пройденных ими расстояний. В самом деле: пусть они находились в пути какое-то время t. Тогда S1 = v1 × t, а S2 = v2 × t. S2/S1 = (v2 × t) / (v1 × t) = v2/v1.
И теперь мы получаем такое соотношение:
v2 / v1 = S2 / S1 = (v1 × t1) / (v2 × t2)
Умножим обе части этого уравнения на отношение v2/v1 и получим:
после сокращения дроби в правой части можно выразить отношение скоростей:
t1 = 54,5 мин t2 = 45 мин.
t2/t1 = 54,5 / 45 = 1,21.
Корень из 1,21 = 1,1
ответ: второй ехал в 1,1 раза быстрее первого.