Относительное число молекул ΔN/N, имеющее скорости в диапазоне от v до v+Δv, дается интегралом в пределах от v до v+Δv, от функции распределения Максвелла по dv. Однако, если Δv << v, то этот интеграл примерно равен ΔN/N = f(v)*Δv В твоем случае (Δv=0,50 м/с) ΔN/N = f(vвер)*2*Δv = (M/(2*п*R*T))^(3/2) *4*п*vвер^2 * exp(-M*vвер^2 / (2*R*T))*2*Δv Известно, что vвер^2 = 2*R*T/M, можно упростить выражение. Т - абсолютная температура М - молярная масса воздуха
если неправильно пож не удоляй
Относительное число молекул ΔN/N, имеющее скорости в диапазоне от v до v+Δv, дается интегралом в пределах от v до v+Δv, от функции распределения Максвелла по dv. Однако, если Δv << v, то этот интеграл примерно равен
ΔN/N = f(v)*Δv
В твоем случае (Δv=0,50 м/с)
ΔN/N = f(vвер)*2*Δv = (M/(2*п*R*T))^(3/2) *4*п*vвер^2 * exp(-M*vвер^2 / (2*R*T))*2*Δv
Известно, что vвер^2 = 2*R*T/M, можно упростить выражение.
Т - абсолютная температура
М - молярная масса воздуха
N - мощность горелки,
t - искомое время,
Q - затраченное количество теплоты.
Разберемся поэтапно с Q.
На что наша горелка будет затрачивать энергию?
- плавление льда: λ m(л)
- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)
- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)
Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).
Запишем найденную формулу Q в формулу мощности:
N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,
откуда искомое время t:
t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.
Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):
t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,
t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,
t = (117250 + 378000) / 1,5*10^3,
t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин