. 2. чугун плавится при температуре 1200 ° с. что можно сказать о температуре отвердевания чугуна? а) может быть любой. б) равна 1200 °с. 3. можно ли в медном сосуде расплавить алюминий? б) выше температуры плавления. г) ниже температуры плавления. а) можно. б) нельзя. 4. из сопла реактивного самолета вылетает газ, температура которого 800 -1100 °с. какие металлы можно использовать для изготовления сопла? а) медь. б) алюминий. д) сталь. б) свинец. г) цинк.
Электрическое поле – это особый вид материи, порождаемый электрическими зарядами и непреложно сопровождающий их. Элементарный электрический заряд в виде точки порождает элементарное сферически-симметричное электрическое поле. Для визуализации пространственного образа такого поля удобно воспользоваться аналогией с «одуванчиком». Центр цветка в такой аналогии – это точечный заряд, а его тончащие лепестки – это электрическое поле. Любая аналогия страдает недостатками, а поэтому следует сказать, что в реальном элементарном электрическом поле – плотность электрического поля, с удалением от точечного заряда, постепенно уменьшается, но никогда не оказывается равной нулю. Представляемый нами одуванчик имеет окончательную поверхность. А элементарное электрическое поле точечного заряда – истончается, истончается, истончается... но никогда не исчезает полностью, на расстоянии даже в квинтиллионы километров.
Поскольку элементарное сферически-симметричное электрическое поле, порождаемое любым точечным электрическим зарядом, является непреложным, т.е. существует всегда, пока существует заряд, и перестаёт существовать при исчезновении источника поля, то вообще говоря, нет смысла рассматривать в понятийном смысле: электрическое поле отдельно от заряда. Точно так же как нет смысла рассматривать по отдельности понятия положительных и отрицательных чисел – одно не имеет смысла без другого. Поле (электростатическое) существует тогда и только тогда, когда существует электрический заряд, а когда существует электрический заряд – непременно существует и его электрическое поле. Таким образом, нужно понимать, что поле электрического заряда – это его «руки» и «ноги», которые у него отнять невозможно. Так что, если мы видим заряженный металлический шар, то нужно понимать, что кроме того, что мы видим (т.е. шар) существует ещё и его электрическое поле, своими тонкими нитями протирающееся сквозь всё необозримое пространство, включая и нас самих – наблюдателей. Причём у любого электрического поля, как и у любой материи, есть и масса и энергия. Так, скажем, если зарядить металлический шар, размером с дыню до 300 вольт, то его внешнее электрическое поле будет весить около 0.00000000001 нанограмма или 0.00000001 пикограмма, что сравнимо с массой примерно 1000 атомов.
Как же можно «потрогать» это невидимое, всепроникающее электрическое поле и является ли оно таким уж всепроникающим? У человека есть несколько достаточно тонко настроенных и развитых чувств. Однако электрический заряд эти чувства не видят, не слышат, не осязают, а поэтому нам нужно построить некоторую модель восприятия – опыт, в котором мы увидим проявление поля – именно это и подразумевается под словом «потрогать». ответ на этот вопрос, как «потрогать» поле проясняет ещё одну важную особенность электрического поля — его векторный характер. И научиться «трогать» поле – довольно просто. Если у нас уже есть один точечный (ну или сферически-симметричный) электрический заряд, то мы можем догадываться, что он порождает/создаёт (а фактически имеет) вокруг себя элементарное сферически-симметричное электрическое поле. Назовём этот заряд, поле которого мы хотим «потрогать» – центральный заряд (ЦЗ).
MV²/2 + mv²/2 = MU²/2 + mu²/2 ,
где V и U – ЗНАКОВЫЕ ПРОЕКЦИИ скоростей большого тела до и после соударения, а v и u – знаковые проекции скоростей до и после соударения малого тела.
MV + mv = MU + mu ;
M ( V² – U² ) = m ( u² – v² ) ;
M(V–U) = m(u–v) ;
V + U = u + v ;
v–V = –(u–U) ;
|v–V| = |u–U| – итак, мы пришли к замечательному выводу: модуль скорости малого тела относительно большого ТОЧНО сохраняется.
К этому же выводу можно прийти и простыми рассуждениями, если перейти временно в инерциальную систему центра масс СЦМ. В СЦМ общий импульс равен нулю, т.е. модули скоростей двухчастной системы пропорциональны друг другу, а энергия сохраняется. Иначе говоря, энергия, пропорциональная сумме квадратов скоростей частей системы, а значит и просто – пропорциональная квадрату скорости любой из частей системы сохраняется! Стало быть, после упругого соударения должны сохраниться и модули скоростей частей системы в СЦМ. А раз скорости относительно СЦМ после соударения сохраняются по модулю и всё так же остаются противоположными, то значит их скорость относительно друг друга по модулю – ТОЧНО сохраняется.
Итак, после абсолютно упругого удара шайбы об уступ: скорости, как доски, так и шайбы – скачкообразно изменятся, ОДНАКО скорость шайбы ОТНОСИТЕЛЬНО ДОСКИ ТОЧНО сохранится по модулю и развернётся.
Будем считать, что движение шайбы всё время происходит в неинерциальной системе отсчёта, связанной с доской.
Для этого разберёмся, как параметры лабораторной системы (ЛСО) – связаны с нашей неинерциальной. В ЛСО движение шайбы происходит с ускорением a = –μg , при этом доска движется с противоположным ускорением [m/M]μg .
Таким образом, в неинерциальной СО, связанной с доской (далее СОД) ускорение шайбы: v' = –μg(1+m/M) ;
Когда скорость шайбы в СОД мгновенно разворачивается, сохраняясь по модулю – одновременно так же мгновенно разворачивается и ускорение в СОД.
Таким образом, в СОД – шайба всё время движется с одним и тем же ускорением v' = –μg(1+m/M), всегда направленным против скорости, которая изменяется без скачков по модулю (скачок отскока мы «сшили»).
В таком случае, поскольку всё происходит на длине S, не более чем 2L – справедлива кинематическая связь:
v²–0² = 2S|v'|< 2*2L|v'| , разность квадратов краевых скоростей равна удвоенному произведению ускорения и пути.
v² < 4Lμg (1+m/M) ;
v < 2√[Lμg(1+m/M)] ;
vmax = 2√[Lμg(1+m/M)] ≈ 2√[0.1g(1+110/500)] ≈ 2√[0.1g(61/50)] ≈
≈ 2√[12.2g/100] ≈ 2√[121/100] ≈ 2*11/10 ≈ 2.2 м/с ;
Хотя, вообще-то если посчитать на калькуляторе, в соответствии с обоими требованиями «до двух знаков после запятой» и «g = 10 м/с2», то:
vmax = 2√[Lμg(1+m/M)] ≈ 2√[1+110/500] ≈ 2.21 м/с .