2)опишите молекулы, модели которых изображены на рисунке 5.2 3)что общего у молекул, модели которых изображены на рисунке 5.2 (а,б,в) 4) образное сравнение , позволяющее представить размеры молекулы
Считать будем в километрах в час для удобства.Если учитывать, что ускорения в начале и в конце пути разные, то выразим их из пути и скорости: a1=3200/S1; a2=3200/S2; Найдем общий путь: Vc=S/t; S=24 км; Запишем такую систему уравнений: 1)1/3=to+t3. to=t1+t2 2)24=S1+S2+80t3; 3)a1t1=a2t2; Опираясь на второе уравнение, выразим там все через a1t1, учитывая, что 80=a1t1; 48=a1t1(t1+2t2)-a2t2^2+2a1t1t3; 48=0.6a1t1; 0.6=t1+t2+2t3; Пришли в системе: 1)0.6=t1+t2+2t3; 2)1/3=t1+t2+t3; 1/15=t1+t2 то есть четыре минуты; Прировняем теплоту, полуденную смесью к теплоте, полученной отдельными компонентами: C(M1+2M2+3M3)delta T=1.5Rdetla T+5Rdelta T+9Rdelta T; 0.08C=129; C=1610 Дж/кг*К
В сообщающихся сосудах покоящаяся жидкость находится на одном уровне, но в сосудах с жидкостями различной плотности жидкость с меньшей плотностью останется на более высоком уровне, чем жидкость с большей. Так как ртуть тяжелее воды, то вода останется на поверхности узкого сосуда, а в широкомбудет только ртуть. Пусть d - диаметр поперечного сечения узкого сосуда, тогда 4d - широкого. При добавлени воды в узкий сосуд действует сила F=1000*g*pi*d^2/4=250*g*pi*d^2 Н. Под действием этой силы уровень ртути в широком сосуде повышается до тех пор, пока дополнительный объём ртути своей массой не скомпенсирует массу добавленной воды. Пусть ртуть в широком сосуде при этом поднимется на h м, тогда дополнительный объём ртути V=pi*(4d)^2/4*h=4*pi*d^2*h, а масса этого объёма ртути будет равна 13600*4*pi*d^2*h. Приравнивая эту массу к массе добавленной воды, получаем 54400*pi*d^2*h=250*pi*d^2, откуда h=250/54400=0,0046 м=0,46 см