Пусть масса вагона равна М. Система движется, как целое, поэтому ускорение первого и второго вагонов одинаковое, пусть оно равно а. Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂. Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂ А для второго так: Ма = Т₂ Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма. Отсюда Т₁/Т₂ = 2.
для решения этой задачи воспользуемся уравнением теплогого баланса: Q1=-Q2(это общий вид). По условию задачи, стальной цилиндр отдает энергию, а калориметр с водой-поглащает. Соотвественно, уравнение принимает вид:
Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂.
Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂
А для второго так: Ма = Т₂
Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма.
Отсюда Т₁/Т₂ = 2.
Дано:
m1(стали)=0.156 кг
m2(калориметра)=0,045 кг
m3(воды)=0,1 кг
t1(воды)=17 С
t2(стали)=100 С
t3(смеси)=29 С
С2(калориметра)=890 Дж/кгС
С3(воды)=4200 Дж/кгC
для решения этой задачи воспользуемся уравнением теплогого баланса: Q1=-Q2(это общий вид). По условию задачи, стальной цилиндр отдает энергию, а калориметр с водой-поглащает. Соотвественно, уравнение принимает вид:
Q1(калориметра)+Q2(воды)=-Q3(стали);
С3m3*(t3-t1)+ C2*m2*(t3-t1)=-(C1*m1*(t1-t2))
4200 Дж/кг С*0,1 кг*(29 C-17 C)+890 Дж/кгС*0,045 кг(29C-17C)=-(0.156 кг*C1*(29C-100C)
5040Дж+480.6 Дж=11.076*C1
C1=(5040+480.6)/11,076=498( приближенно равно табличному значению)