2. первую пластину подняли вверх над горизонтальной поверхностью, а вторую несколько разизогнули, в результате чего она нагрелась. работа в обоих случаях была совершена одинаковая.изменилась ли внутренняя энергия пластин? а. у первой пластины увеличилась, а у второй не изменилась. б. нигде не изменилась.в. у первой не изменилась, а у второй увеличилась. г. у обеих пластин увеличилась.
Условие задачи:
Два тела масс m1 и m2, связанные невесомой нитью, лежат на гладкой горизонтальной поверхности. Нить обрывается, если сила её натяжения превышает значение Tm. C какой максимальной горизонтальной силой F можно тянуть второе тело, чтобы нить не оборвалась?
Задача №2.1.82 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
m1, m2, Tm, Fm−?
Решение задачи:
Схема к решению задачиПотянем второе тело с такой силой Fm, что сила натяжения нити, соединяющей тела, станет очень близка по величине к Tm, но ещё не разорвется.
По условию поверхность, по которой движутся тела, гладкая, значит сил трения нет. Покажем на схеме все силы, действующие на тела, потом запишем второй закон Ньютона для обоих тел в проекции на ось x. Ускорения рассматриваемых тел, естественно, одинаковые.
{Fm—Tm=m2aTm=m1a
Сложим оба выражения системы, а из полученного выразим ускорение a.
Fm=(m1+m2)a
a=Fmm1+m2
Подставим формулу в последнее выражение системы, а оттуда выразим искомую силу Fm.
Tm=Fmm1m1+m2
Fm=Tm(m1+m2)m1
Поделим почленно числитель дроби на знаменатель.
Fm=Tm(1+m2m1)
В условии не было дано числовых данных, задачу требовалось решить в общем виде, что мы и сделали.
ответ: Tm(1+m2m1)
кинетическая энергия рассчитывается по формуле Ек= m*v^2/2
есть соотношение Еп/Ек=4
его можно переписать так:
9,8*m*h/(m*v^2/2)=4
для удобства примем, что камень у нас весит 1 кг. можно любой другой вес, он всеравно сократится, просто с килограммовым камнем меньше путаницы и недопонимания.
тогда формула примет такой вид:
19,6*h/v^2=4
тогда выразим высоту:
h=4*v^2/19,6
потенциальная энергия килограммового камня на 100-метровой высоте 980 Дж.
тогда на высоте h при которой потенциальная энергия этого камня больше кинетической в 4 раза суммарная энергия будет выглядеть так:
9,8*h+v^2/2=980
выразим v^2 и поставим в предыдущее уравнение
V^2=2*(980-9,8*h)
тогда
h=8*(980-9,8*h)/19,6
h=(7840-78,4*h)/19,6
h=400-4*h
h=400/5
h=80 (m)
теперь можно подставить эту высоту в какое-нибудь уравнение и посчитать скорость
v^2=2*(980-9,8*80)
v^2=392
v=19,8 (м/с)