В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Reek5657
Reek5657
16.02.2022 06:59 •  Физика

20 .поезд массой 500 т движется равнозамедленно в течение времени 3 минут снижает свою скорость на 54 км/ч до 18 км/ч. определите силу торможения (ответ в кн)

Показать ответ
Ответ:
ррпарпоа1
ррпарпоа1
04.03.2023 18:07
Блок — простое механическое устройство, позволяющее регулировать силу, ось которого закреплена при подъеме грузов, не поднимается и не опускается. Представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната, цепи, ремня и т. п. Ось блока помещается в обоймах, прикреплённых на балке или стене, такой блок называется неподвижным (то есть ось блока закреплена); если же к этим обоймам прикрепляется груз, и блок вместе с ними может двигаться, то такой блок называется подвижным.

Неподвижный блок употребляется для подъёма небольших грузов или для изменения направления силы.

Условие равновесия блока:

~F=fmg, где

F — прилагаемое внешнее усилие, m — масса груза, g — ускорение свободного падения, f — коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок — 1,1)..

При отсутствии трения для подъема нужна сила, равная весу груза.

Подвижный блок имеет свободную ось и предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом; отсюда, если веревки параллельны (то есть когда дуга, обхватываемая веревкой, равна полуокружности), то для подъёма груза потребуется сила вдвое меньше, чем вес груза, то есть:

~F={1 \over {2}}fmg

При этом груз пройдёт расстояние, вдвое меньшее пройденного точкой приложения силы F, соответственно, выигрыш в силе подвижного блока равен 2.

Фактически, любой блок представляет собой рычаг, в случае неподвижного блока — равноплечий, в случае подвижного — с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: Во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии. Иными словами, работа, совершаемая при перемещении груза на какое-либо расстояние без использования блока, равна работе, затрачиваемой при перемещении груза на то же самое расстояние с применением блока при условии отсутствия трения. В реальном блоке всегда присутствуют некоторые потери.

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется поли Простейшая такая система изображена на рисунке и даёт выигрыш в силе в 2 раза.

В отличие от шкива, блок вращается на оси свободно и обеспечивает исключительно изменение направления движения ремня или каната, не передавая усилия с оси на ремень или с ремня на ось.
0,0(0 оценок)
Ответ:
irina956
irina956
07.05.2023 21:56

осмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.

в цепи, представленной на схеме 10.10, течёт ток. отключим источник e, разомкнув в момент времени  t  = 0 ключ  к. ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.

рис. 10.10.

запишем для новой схемы 10.10.b  уравнение правила напряжений кирхгофа:

.

разделяем переменные и интегрируем:

пропотенцировав последнее уравнение, получим:

.

постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника  t  = 0, ток в катушке  i(0) =  i0.

отсюда следует, что  c  =  i0  и поэтому закон изменения тока в цепи приобретает вид:

                                                  .                                              (10.7)

график этой зависимости на рис. 10.11. оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя  t  = ¥.

рис. 10.11.

вы и сами теперь легко покажете, что при  включении  источника (после замыкания ключа  к) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению  i0  (см. рис. 10.

                                                  .                                    (10.8)

но вернёмся к первоначальной размыкания цепи.

мы отключили в цепи источник питания (разомкнули ключ  к), но ток — теперь в цепи 10.8.b  — продолжает течь. где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?

ток поддерживается электродвижущей силой самоиндукции e =  . за время  dt  убывающий ток совершит работу:

da  = eси×i×dt  = –lidi.

ток будет убывать от начального значения  i0  до нуля. проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:

                                        .                          (10.9)

совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.

с чем же связана была выделившаяся энергия? где она была локализована? располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? или она локализована в объёме соленоида, в его магнитном поле?

опыт даёт ответ на эти вопросы:   энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.

несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:

          l  = m0n2sl          (10.5) — индуктивность;

          b0  = m0ni0          (9.17) — поле соленоида.

эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:

                              .                          (10.10)

здесь  v  =  s×l  — объём соленоида (магнитного

энергия катушки с током пропорциональна квадрату вектора магнитной индукции.

разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:

  [].                                      (10.11)

это выражение похоже на выражение плотности энергии электростатического поля:

.

обратите внимание: в сходных уравнениях, если e0  — в числителе, m0  — непременно в знаменателе.

зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, в любом объёме  v  поля.

локальная плотность энергии в заданной точке поля:

.

значит,  dw  = wdv  и энергия в объёме  v  равна:

.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота