3. Диск радиусом 12см вращается с постоянным угловым ускорением. Определи тангенциальное ускорение.нормальное ускорение и полное ускорение к концу времени t . Данные для решения Е=3.14рад/с2,t=1с
До T₁ движение по этой координате равномерное. При постоянной скорости, численно равной тангенсу угла, показанного на графике. T> t₁ торможение активировано. Скорость уменьшается с постоянным ускорением, потому что график представляет собой параболу. При T₂ скорость равна нулю. При T> t₂ направление скорости меняется на начальное. График скорости представляет собой прямую, параллельную оси времени, равную tgα. При рефракции T> t T график скорости представляет собой прямую линию, которая пересекающую ось абсцисс в точке t2" (где скорость равна 0). В точке Т значение скорости равно начальному значению, полученному обратным знаком.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения энергии.
До T₁ движение по этой координате равномерное. При постоянной скорости, численно равной тангенсу угла, показанного на графике. T> t₁ торможение активировано. Скорость уменьшается с постоянным ускорением, потому что график представляет собой параболу. При T₂ скорость равна нулю. При T> t₂ направление скорости меняется на начальное. График скорости представляет собой прямую, параллельную оси времени, равную tgα. При рефракции T> t T график скорости представляет собой прямую линию, которая пересекающую ось абсцисс в точке t2" (где скорость равна 0). В точке Т значение скорости равно начальному значению, полученному обратным знаком.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения энергии.