4)Маленькая лампочка размещается на 1,41 м от поверхности стола. Освещенность в той точке стола, куда свет падает перпендикулярно, составляет 100 лк. Объясните, как изменится освещение в той точке стола, где свет падает перпендикулярно, если лампочку поставить в 2 раза ближе! 5)Если положить на стол лист белой бумаги, поток падающего на него света составляет 4 люмена, а освещенность поверхности – 100 лк. Предположим, что свет падает перпендикулярно поверхности листа и его поток равномерно распределяется по всей поверхности листа. Запишите, какое соотношение (формулу) следует использовать для определения площади поверхности листа!
Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
R₁ = 259.8 H; R₂ = 150 H
Объяснение:
Будем считать, угол между левой и правой опорными плоскостями равен 90°.
G = 300H
R₁ - ? - реакция правой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
R₂ - ? - реакция левой опорной плоскости (направлена перпендикулярно этой плоскости по её внешней нормали)
Очевидно, что R₁ ⊥ R₂
Проецируем систему сил на направление R₁
R₁ - G · cos 30° = 0
R₁ = G · cos 30° = 300 · 0.866 = 259.8 (H)
Проецируем систему сил на направление R₂
R₂ - G · sin 30° = 0
R₂ = G · sin 30° = 300 · 0.5 = 150 (H)
11,25 м
Объяснение:
Если решать эту задачу по школьному, без привлечения инструментария матанализа, то рассуждать можно следующим образом, - в любой точке траектории ускорение свободного падения может быть разложено на две составляющих - вдоль касательной к траектории (нормальное ускорение) и вдоль нормали к траектории (центростремительное ускорение), нам нужна вторая величина, так как она позволяет рассчитать искомый радиус. В наивысшей точке подъема мяча, очевидно, что центростремительное ускорение целиком совпадает с ускорением свободного падения:
Откуда:
Горизонтальная составляющая скорости будет везде одинакова и равна (учтем что 54 км/ч=15 м/с):
м/с
Искомый радиус кривизны траектории:
м.