зная диаметр шара, можно сразу вычислить радиус, и затем найти все остальные параметры сферы, такие как длина окружности, площадь поверхности и объем. радиус шара через диаметр равен его половине. r=d/2
длина окружности сферы через диаметр выглядит как его произведение на число π, поэтому можно вычислить ее напрямую, без производных формул. p=πd
чтобы найти площадь поверхности сферы через диаметр, нужно преобразовать ее формулу, подставив вместо радиуса одну вторую диаметра, тогда площадь поверхности будет равна произведению числа π на квадрат диаметра. s=4πr^2=(4πd^2)/4=πd^2
для того чтобы вычислить объем шара, необходимо возвести радиус в третью степень, умножив его на четыре трети числа π, поэтому вставив в формулу вместо радиуса половину диаметра, получим, что объем шара через диаметр равен v=4/3 πr^3=4/3 π(d/2)^3=(πd^3)/6
Энергию деформированного упругого тела также называют энергией положения или потенциальной энергией (ее называют чаще упругой энергией), так как она зависит от взаимного положения частей тела, например витков пружины. Работа, которую может совершить растянутая пружина при перемещении ее конца, зависит только от начального и конечного растяжений пружины. Найдем работу, которую может совершить растянутая пружина, возвращаясь к не растянутому состоянию, то есть найдем упругую энергию растянутой пружины.
Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.
Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.
зная диаметр шара, можно сразу вычислить радиус, и затем найти все остальные параметры сферы, такие как длина окружности, площадь поверхности и объем. радиус шара через диаметр равен его половине. r=d/2
длина окружности сферы через диаметр выглядит как его произведение на число π, поэтому можно вычислить ее напрямую, без производных формул. p=πd
чтобы найти площадь поверхности сферы через диаметр, нужно преобразовать ее формулу, подставив вместо радиуса одну вторую диаметра, тогда площадь поверхности будет равна произведению числа π на квадрат диаметра. s=4πr^2=(4πd^2)/4=πd^2
для того чтобы вычислить объем шара, необходимо возвести радиус в третью степень, умножив его на четыре трети числа π, поэтому вставив в формулу вместо радиуса половину диаметра, получим, что объем шара через диаметр равен v=4/3 πr^3=4/3 π(d/2)^3=(πd^3)/6
Потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.
Из этой формулы видно, что, растягивая с одной и той же силой разные пружины, мы сообщим им различный запас потенциальной энергии: чем жестче пружина, то есть чем больше коэффициент упругости, тем меньше потенциальная энергия; и наоборот: чем мягче пружина, тем больше энергия, которую она запасет при данной силе, растянувшей ее. Это можно уяснить себе наглядно, если учесть, что при одинаковых действующих силах растяжение мягкой пружины больше, чем жесткой, а потому больше и произведение силы на путь точки приложения силы.
Так же есть:
Потенциальная энергия :
Кинетическая энергия