Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Это графики изменения координаты тела со временем.
Возьмем 1 тело. Координата уменьшается, тело движется против оси координат. Чтобы найти скорость движения, надо взять промежуток времени и посмотреть пройденный за это время путь.
Если взять первые 10 с, то координата была 300 м, а стала 250 м.
V1=(250 - 300)/10=-50/10=-5 м/с
Возьмем 20 с. V1=(200 - 300)/20= - 5 м/с. Движение равномерное с постоянной скоростью (-5) м/с. Минус показывает, что тело движется против оси координат из точки 300 м к началу отсчета.
Второй график. Координата увеличивается, тело движется вдоль оси координат. Найдем скорость. Возьмем 20 с. За это время тело из точки 150 м перешло в точку 200 м.
V2=(200 - 150)/20=2,5 м/с.
Тело из точки 150 м движется вдоль оси координат со скоростью
2,5 м/с.
Точка пересечения показывает, что оба тела через 20 с после начала наблюдения за телами находились в точке 200 м от начала отсчета. Если у них была одинаковая координата, значит они встретились. После встречи стали удаляться друг от друга.
m = 30 кг.
g = 10 м/с2.
а = 0 м/с2.
∠α = 30°.
μ = 0,5.
Fт - ?
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.