За время t маятник совершит t/T=162c/3,04с =53,25 полных колебаний
За один период маятник проходит точки, где его кинетическая энергия масимальна дважды
за 53 периода это случиться 53*2=106 раз, за еще 0,25 периода маятник придет в эту точку еще раз
итого n=107
на самом деле более точное зачение не 53,25 а 53,2481, поэтому возможно, что в задаче подразумевается, что за 162 с маятник всеже не дойти до этой точки 107 раз и тогда правильный ответ 106
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
107 (возможно 106)
Объяснение:
Дано
l=2,3м
t=2,7мин=162с
g=9,8м/с²
π=3,14
Найти n
период математического маятника можно найти по формуле
T=2π√(l/g)=2*3,14√(2,3м/9,8м/с²)=6,28√(0,235с²)=6,28*0,49с=3,04с
За время t маятник совершит t/T=162c/3,04с =53,25 полных колебаний
За один период маятник проходит точки, где его кинетическая энергия масимальна дважды
за 53 периода это случиться 53*2=106 раз, за еще 0,25 периода маятник придет в эту точку еще раз
итого n=107
на самом деле более точное зачение не 53,25 а 53,2481, поэтому возможно, что в задаче подразумевается, что за 162 с маятник всеже не дойти до этой точки 107 раз и тогда правильный ответ 106
Согласно условию скорость зависит от угла поворота $v(\phi)=\frac{\phi}{2\pi}*V$
Нормально ускорение: $a_n=\frac{v^2}{R}$
а) $\phi=2\pi$ $a_n=\frac{V^2}{R}$
б) $\phi=\pi$ $v(\phi)=\frac{\pi}{2\pi}*V=\frac{V}{2}$ $a_n=\frac{V^2}{4R}$
в) $\phi=\frac{\pi}{2}$ $v(\phi)=\frac{\frac{pi}{2}}{2\pi}*V=\frac{V}{4}$
$a_n=\frac{V^2}{16R}$
г) $\phi=\frac{\pi}{3}$ $v(\phi)=\frac{\frac{pi}{3}}{2\pi}*V=\frac{V}{6}$
$a_n=\frac{V^2}{36R}$
д) $\phi=0$ $a_n=0$
Тангенциальное ускорение:
Поскольку ни период, ни время, ни частота оборотов в условии не заданы, определить тангенциальное ускорение в метрах за секунду в квадрате не представляется возможным. Ничего не остаётся, как привязать это ускорение к углу поворота, тогда у нас будут единицы м/(рад*с)
Тангенциальное ускорение $a_{tau}=\frac{V-0}{2\pi}=\frac{V}{2\pi}$
Оно будет постоянным для всего оборота $a_{tau}=\frac{V}{2*3,14}\approx 0,16V$
а) $\phi=2\pi$ $a_{tau}\approx 0,16V$
б) $\phi=\pi$ $a_{tau}\approx 0,16V$
в) $\phi=\frac{\pi}{2}$ $a_{tau}\approx 0,16V$
г) $\phi=\frac{\pi}{3}$ $a_{tau}\approx 0,16V$
д) $\phi=0$ $a_{tau}\approx 0,16V$
Полное ускорение: $a=\sqrt{a_n^2+a_{\tau}^2}$
а) $\phi=2\pi$ $a=\sqrt{(\frac{V^2}{R})^2+(0,16V)^2}$
б) $\phi=\pi$ $a=\sqrt{(\frac{V^2}{4R})^2+(0,16V)^2}$
в) $\phi=\frac{\pi}{2}$ $a=\sqrt{(\frac{V^2}{16R})^2+(0,16V)^2}$
г) $\phi=\frac{\pi}{3}$ $a=\sqrt{(\frac{V^2}{36R})^2+(0,16V)^2}$
д) $\phi=0$ $a=\sqrt{(0,16V)^2}=0,16V$