Итак, у нас есть две гири и одна ниже другой на два метра. Их отпускают и через две секунды они будут на одной высоте. Нужно найти частность их масс. Во-первых, за две секунды обе гири проедут 1 м. Во-вторых, их суммарная сила которая тянет их равна Fсум = Fб - Fм (m1+m2)a = m1g - m2g
Во-первых, за две секунды обе гири проедут 1 м.
Во-вторых, их суммарная сила которая тянет их равна
Fсум = Fб - Fм
(m1+m2)a = m1g - m2g
Найдем ускорение
S=Uo*t + 1/2 *a*t^2 Uo=0
S=1/2 * a * t^2
a=2S/t^2 = 2*1м/2^2 = 2/4 = 0.5м/с^2
m1a+m2a = m1g - m2g
m2(a+g)=m1(g-a)
m1/m2 = (a+g)/(g-a) = 10.5 / 9.5 = 1.1
ответ: Масса тяжелой гири в 1,1 раз больше массы легкой
Вопросы в комменты, ставим лучший
Объяснение:
1 тело:
X₀₁ = - 80 м
X₁ = 120 м
t₁ = 20 с
Скорость движения первого тела:
V₁ = (X₁ - X₀₁) / t₁ = (120 - (-80))/20 = (120+80) / 20 = 10 м/с
Уравнение движения:
X₁ = X₀₁ + V₁·t
или
X₁ = - 80 + 10·t (1)
2 тело:
X₀₂ = 100 м
X₂ = - 80 м
t₁ = 30 с
Скорость движения второго тела:
V₂ = (X₂ - X₀₂) / t₂ = (-80 - 100) / = - 180 / 30 = - 6 м/с
Уравнение движения:
X₂ = X₀₂ + V₂·t
или
X₂ = 100 - 6·t (2)
Поскольку тела встретились, то приравняем (1) и (2):
- 80 + 10·t = 100 - 6·t
16·t = 180
t = 180/16 ≈ 11 с
X = -80 + 10·11 ≈ 30 м
Покажем это на графике: