6. Два электронагревателя с сопротивлением 200 Ом и 300 Ом подклю- чены параллельно к электрической сети. Сравните количество теплоты, выделенное ими в одно и то же время.
1.Импульс силы: величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела): мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости. 3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию 6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.
Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сила давления газа, действуя на поршень с силой . согласно третьему закону ньютона . модуль силы, действующей со стороны газа на поршень, равен , где p - давление газа, а s - площадь поверхности поршня. пусть газ расширяется изобарно и поршень смещается в направлении силы на малое расстояние . так как давление газа постоянно, то работа газа равна: эту работу можно выразить через изменение объема газа. начальный его объем v1=sh1, а конечныйv2=sh2. поэтому где - изменение объема газа. при расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня .
величина (векторная), равная произведению силы на время ее действия, мера воздействия силы на тело за данный промежуток времени (в поступательном движении).
Просто импульс (тела):
мера механического движения, величина (векторная), равная произведению массы этой точки (или тела) на её скорость и направленную так же, как вектор скорости.
3.Значение потенциальной энергии тела, поднятого над Землей, зависит от выбора нулевого уровня, то есть высоты, на которой потенциальная энергия принимается равной нулю. Обычно принимают, что потенциальная энергия тела на поверхности Земли равна нулю.
При таком выборе нулевого уровня потенциальная энергия тела, находящегося на высоте h над поверхностью Земли, равна произведению массы тела на Модуль ускорения свободного падения и расстояние его от поверхности Земли:
Wp = mgh.
Из всего выше сказанного, можем сделать вывод: потенциальная энергия тела зависит всего от двух величин, а именно: от массы самого тела и высоты, на которую поднято это тело. Траектория движения тела никак не влияет на потенциальную энергию
6.Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.