В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Диана19371
Диана19371
25.05.2021 08:15 •  Физика

7. Визнач молярну масу газу, якщо середня квадратична швидкість його молекул за темпе- ратури 27 °C дорівнює 730 m/s

Показать ответ
Ответ:
Aliskaliska27
Aliskaliska27
10.01.2023 04:03
Сравнивая уравнение состояния идеального газа и основное уравнение кинетической теории газов, записанные для одного моля (для этого число молекул N возьмём равным числу Авогадро NА), найдём среднюю кинетическую энергию одной молекулы: и .Откуда.           (31)Средняя кинетическая энергия поступательного движения молекулы не зависит от её природы и пропорциональна абсолютной температуре газа T. Отсюда следует, что абсолютная температура является мерой средней кинетической энергии молекул.Величина R/NА = k в уравнении (31) получила название постоянной Больцмана и представляет собой газовую постоянную, отнесенную к одной молекуле: 
k = 1,38·10-23 Дж/К-23.Так как =kТ, то средняя квадратичная скорость равна.           (32)Подставляя значение средней кинетической энергии поступательного движения молекул (31) в основное уравнение молекулярно–кинетической теории газов, получим другую форму уравнения состояния идеального газа:P = n0kT.           (33)Давление газа пропорционально произведению числа молекул в единице объема на его термодинамическую температуру. На рис. приведена схема опыта Штерна для определения скорости молекул газа.
В нагревателе с поверхности проволоки, раскаленной электрическим током, испаряются атомы серебра. Попадая из нагревателя через отверстие в вакуумную камеру, молекулы пара с системы щелей формируются в узкий пучок, направленный в сторону двух дисков, вращающихся с угловой скоростью w .Диски используются для сортировки молекул по скоростям. Угол между прорезями в дисках q. Расстояние между дисками X в процессе эксперимента не изменяется. Для того, чтобы молекула пара попала на приемник  детектора частиц, она должна пройти через прорези в дисках. Для этого время прохождения молекулы, движущейся со скоростью V между дисками, должно быть равно времени поворота прорези второго диска на угол  q. Поэтому
                                                    V=w· X/  q
0,0(0 оценок)
Ответ:
калинка2006
калинка2006
24.03.2020 11:50
Дано: 
m= 1,2 г=1,2*10⁻³кг
M= 3г=3*10⁻³кг
R= 35 см=0,35 м
Q= 3 мкКл=3*10⁻⁶Кл
V₀= 1,8м/с
k= 9*10⁹(Н*м²)/Кл²
qmax-?

Решение:
V₁ и V₂-  скорость бусинки и кольца в конечный момент времени 
1. Закон сохранения энергии : 
\frac{mV _{o} }{2} +W _{n(1)} = \frac{mV _{1} ^{2} }{2} + \frac{MV _{2} ^{2} }{2} +W _{n(2)}

Wп(1) = 0 − потенциальная энергия взаимодействия бусинки  

mV₀²/2 - кинетическая энергия бусинки в начальный момент времени 
mV₁² /2 - кинетическая энергия бусинки в конечный момент времени; 
MV₂² /2 − кинетическая энергия кольца в конечный момент времени; 
Wn(2) = kqQ /R   − потенциальная энергия взаимодействия бусинки и кольца в конечный момент  времени.   

\frac{mV _{o} }{2} = \frac{mV _{1} ^{2} }{2} + \frac{MV _{2} ^{2} }{2} + \frac{kqQ}{R}

2. Закон сохранения импульса:
mV _{o} =mV _{1} +MV _{2} \\ V _{2} =m(V _{o} -V _{1} )/M \\ \frac{mV _{o} }{2} = \frac{mV _{1} ^{2} }{2} + \frac{Mm ^{2}(V _{o} -V _{1} ) }{2M ^{2} } + \frac{kqQ}{R} \\ \frac{mV _{o} }{2} = \frac{mV _{1} ^{2} }{2} + \frac{m ^{2}(V _{o} ^{2} +V _{1} ^{2}-2V _{o} V _{1}) }{2M} + \frac{kqQ}{R} \\ q=- \frac{mR(M+m)}{2kQM} *V _{1} ^{2} + \frac{m ^{2}RV _{o} }{kQM} *V _{1} + \frac{mR(M-m)V _{o} ^{2} }{2kQM} \\

A=- \frac{mR(M+m}{2kQM} \\ \\ B= \frac{ m^{2}RV _{o} }{kQM} \\ \\ C= \frac{mR(M-m)V _{o ^{2} } }{2kQM} \\

q = a·VБ² + b·VБ + c .  q=A*V _{1} ^{2} +B*V _{1} ^{2} +C \\ V _{o} =- \frac{B ^{2} }{2A} \\q _{max}=A*(-B/2A)) ^{2}+B(*(-B/2A))+C= \\ B ^{2} /4A-B ^{2}/2A+C=-B /4A+C^{2} \\ q _{max} =- \frac{ B ^{2} }{4A+C}

q _{max} = \frac{(m ^{2 } RV _{o}/(kQM)) x^{2} }{4mR(M+m)/(2kQM)} + \frac{mR(M-m)V _{o} ^{2} }{2kQM} = \frac{MmRV _{o} ^{2} }{2kQ(M+m)} \\

q _{max} = \frac{3*10 ^{-3}*1.2*10 ^{-3} *0.35*1.8 ^{2}}{2*9*10 ^{9}*3*10 ^{-6} *(3*10 ^{-3} +1.2*10 ^{-3})} =18*10 ^{-9} Kl =18 nKl

ответ: : 18 нКл 

как-то так 
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота