Решение: По закону сохр энерг mv^2/2=mgl1-Fнат(∆l/2) {*}. Если бы вместо резинки была нить (нерастяжимая), то mgl=mv^2/2, v^2=2gl=> 2g=v^2/l (1) Тогда применив 2 закон Ньютона для нижней точки траектории, получим Fнат-mg=ma => Fнат=mg+mv^2/l=mg+m2g=3mg (с учетом (1). Подставив в {*}, получим mv^2/2=mgl1-3mg((l1-l)/2). Сократим на m и умножим на 2 (избавляемся от знаменателя), тогда v^2=2gl1-3g(l1-l)=2gl1-3gl1+3gl=3gl-gl1=g(3l-l1). Извлекаем корень v=√g(3l-l1). Подставим и вычислим: v=√9.8*(3*0,8-1)= √9,8*1,4=√13,72=3,7 (м/с). ответ: v=3,7 м/с (примерно с небольшими округлениями и учетом того, что брали нить).
1. две пружины, придвинув друг к другу, сдавили так, что вторая с жесткостью 300 нм укоротилась на 3 см. Какова жесткость первой резины ,если ее длина при этом уменьшилась на 5 см? k2=300 Н/м X2=3 см X1=5 см k1- ? F1=F2 k1*X1=k2*X2 k1=k2*x2/x1=300*3/5=180 Н/м
2. Брусок массой 0,5 кг начинает двигаться по гладкому столу с ускорением 6 м/с^2 под действием пружины жесткостью 250 н/м. на сколько
растягивается при этом пружина? Дано m=0,5 кг a=6 м/с2 k=250 Н/м x- ?
Решение:
По закону сохр энерг mv^2/2=mgl1-Fнат(∆l/2) {*}.
Если бы вместо резинки была нить (нерастяжимая), то mgl=mv^2/2, v^2=2gl=> 2g=v^2/l (1) Тогда применив 2 закон Ньютона для нижней точки траектории, получим Fнат-mg=ma =>
Fнат=mg+mv^2/l=mg+m2g=3mg (с учетом (1). Подставив в {*}, получим mv^2/2=mgl1-3mg((l1-l)/2). Сократим на m и умножим на 2 (избавляемся от знаменателя), тогда
v^2=2gl1-3g(l1-l)=2gl1-3gl1+3gl=3gl-gl1=g(3l-l1). Извлекаем корень v=√g(3l-l1).
Подставим и вычислим: v=√9.8*(3*0,8-1)= √9,8*1,4=√13,72=3,7 (м/с).
ответ: v=3,7 м/с (примерно с небольшими округлениями и учетом того, что брали нить).
k2=300 Н/м X2=3 см X1=5 см k1- ?
F1=F2
k1*X1=k2*X2
k1=k2*x2/x1=300*3/5=180 Н/м
2. Брусок массой 0,5 кг начинает двигаться по гладкому столу с ускорением 6 м/с^2 под действием пружины жесткостью 250 н/м. на сколько
растягивается при этом пружина?
Дано m=0,5 кг a=6 м/с2 k=250 Н/м x- ?
F=k*X=m*a
X=m*a/k=0,5*6/250=3/250=0,012 м=1,2 см