8. Лыжник, спускаясь с горы, проходит 50 м за 5 с. Спустившись с го ры и продолжая двигаться, он до полной остановки проходит еще 30 м за 15 с. Найдите среднюю скорость лыжника за всё время дви- жения.
1) рассмотри движение тела с постоянной скоростью под действием силы тяги, направленной под углом α к горизонту
1. так как движение равномерное, то скорость постоянна и действителен первый закон Ньютона
2. рассмотрим силы, действующие на тело по горизонтали:
• проекция силы тяги F cosα • сила трения Fтр = u N
спроецировав силы на некоторую ось, нетрудно получить, что:
F cosα = u (mg - F sinα),
u = F cosα / (mg - F sinα).
(силу нормальной реакции опоры N мы выразили, записав 1 закон Ньютона для вертикали).
теперь, зная коэффициент трения u, можно выразить ускорение во втором действии
2) рассмотрим прямолинейное равноускоренное движение тела под действием силы тяги F, направленной под углом β к горизонту (подразумеваем, что значение Fcosβ > u N)
силы, действующие на тело в данном случае, не скомпенсированы, и потому появляется ускорение, работаем со вторым законом Ньютона
аналогично первому случаю, делаем чертеж для второго: единственное, что изменилось - появилось ускорение:
F cosβ - u N = ma,
a = (F cosβ - u N) / m.
силу нормальной реакции опоры N выражаем посредством 1 закона Ньютона применительно к вертикали аналогично 1 случаю:
N = mg - F sinβ
подставляя выражения для u и N в формулу ускорения, получаем:
1. так как движение равномерное, то скорость постоянна и действителен первый закон Ньютона
2. рассмотрим силы, действующие на тело по горизонтали:
• проекция силы тяги F cosα
• сила трения Fтр = u N
спроецировав силы на некоторую ось, нетрудно получить, что:
F cosα = u (mg - F sinα),
u = F cosα / (mg - F sinα).
(силу нормальной реакции опоры N мы выразили, записав 1 закон Ньютона для вертикали).
теперь, зная коэффициент трения u, можно выразить ускорение во втором действии
2) рассмотрим прямолинейное равноускоренное движение тела под действием силы тяги F, направленной под углом β к горизонту (подразумеваем, что значение Fcosβ > u N)
силы, действующие на тело в данном случае, не скомпенсированы, и потому появляется ускорение, работаем со вторым законом Ньютона
аналогично первому случаю, делаем чертеж для второго: единственное, что изменилось - появилось ускорение:
F cosβ - u N = ma,
a = (F cosβ - u N) / m.
силу нормальной реакции опоры N выражаем посредством 1 закона Ньютона применительно к вертикали аналогично 1 случаю:
N = mg - F sinβ
подставляя выражения для u и N в формулу ускорения, получаем:
a ≈ 0.875 м/с² ≈ 0.9 м/c²
• сила Архимеда со стороны воды
• сила тяжести со стороны Земли
• сила тяги со стороны наблюдателя
2. так как брусок покоится, то все силы, действующие на него, скомпенсированы (по 1 закону Ньютона):
Fa + F + mg = 0.
в проекции на некоторую ось, направленную вертикально вверх, получим:
Fa + F - mg = 0,
F = mg - Fa.
по сути, мы вывели формулу веса тела в жидкости. то есть сила, достаточная для того, чтобы удержать тело в воде, - есть его вес в воде
F = p(медь) a b c g - p(вода) g a b c,
F = a b c g (p(медь) - p(вода)).
F = 10 (8 900 - 1 000) = 79 000 Н = 79 кН