В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Агата1713
Агата1713
10.07.2021 06:07 •  Физика

9 класс,как можно быстрее ​


9 класс,как можно быстрее ​

Показать ответ
Ответ:
aynurqulieva
aynurqulieva
17.08.2022 02:00

Объяснение:

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S, которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,

d 2S < 0).

Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

, (4.3)

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

, (4.4)

где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

, (4.5)

где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

. (4.6)

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Qобр = TdS, (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении.

Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости:  Qобр = Cp dT.

(4.9)

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2: а) обратимо; б) против внешнего давления p.

0,0(0 оценок)
Ответ:
srigermisha1
srigermisha1
07.01.2022 03:25
Глядя на функциональную зависимость  S от t, заданную в задаче, легко видеть, что зависимость пройденного телом пути от времени является линейной. На это указывает показатель степени при переменной t. Раз показатель степени равен 1, то зависимость линейная. Отсюда следует, что тело движется с постоянной скоростью, и, следовательно, его ускорение в любой момент времени равно нулю. 
 Но к такому выводу можно прийти и применив  строго «научный» подход.  Как известно ускорением является вторая производная пути по времени.  Таким образом, что бы найти ускорение тела в некоторый момент времени, надо дважды продифференцировать заданную в задаче функцию по времени, и в найденное выражение подставить заданное t.  Первая производная от S по t будет равна  4. Найдя производную от 4, мы найдем вторую производную заданной функции. Как известно, производная от постоянной величины (т.е. производная от 4) равна нулю. И, следовательно, ускорение тела равно нулю. Таким образом, мы строго показали, что ускорение тела  в любой момент времени равно нулю.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота