Альфа-частица, влетевшая в камеру Вильсона со скоростью 12 Мм/с, оставила прямолинейный трек длиной 2,2 см. Найти модуль ускорения и время движения частицы.
(ответы представить в стандартном виде m⋅10n, где 1≤m<10, n∈Z. Число m округлить до десятых.)
Ускорение a=
⋅10
м/с.
Время t=
⋅10
с.
На мяч в воде действует сила тяжести и Архимедова. По второму закону Ньютона ma=F-mg, где архимедова сила определяется по формуле: F=ρgV.
Отсюда ускорение мяча в воде: a=F/m-g, a=ρgV/m-g. Сопротивление воды не учитываем. Из формулы пути в воде найдём скорость мяча на поверхности воды:
h=v^2/2a=v^2/(2(ρgV/m-g)). v^2=2h( ρgV/m-g).
Из закона сохранения энергии мяча над водой найдём высоту:
mgs=〖mv〗^2/2, s=v^2/2g=(2h(ρgV/m-g))/2g=(h(ρgV/m-g))/g=(1((1000∙10∙10∙〖10〗^(-6))/0,01-10))/10=0
(Это полное решение задачи. Но вообще по условию получается, что сила тяжести равна силе Архимеда, поэтому мяч с такими данными будет плавать в воде. Чтобы мяч выпрыгнул из воды надо взять больше объём или меньше массу. )
Объяснение:
Объяснение (вычисления кропотливые, обязательно проверяйте):
У задачи два варианта решения:
1) угол броска направлен ниже линии горизонта
2) угол броска направлен выше линии горизонта
Вариант 1)
Разложим проекции скорости вначале V0 и вконце V1 полёта на оси.
При этом
Из закона сохранения энергии имеем
Теперь можно найти время полёта
Пройденный путь будет равен
2) Во втором случае добавится время, которое тело пролетит выше уровня H
Время до середины этого участка траектории будет
Всё время этой части траектории будет
Это время добавляем к времени, полученном в первой части
Аналогично вычисляем путь