Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
Что же нам известно? T1 = 0 C; T2 = 20 C; Q1 = 100 000 Дж; Q2 = 75 000 Дж; T3 - ?
Составим уравнение теплового баланса для проделаного експеримента. Обозначим массу куска льда m. Q1 = L*m + c*m*(T2-T1); где L = 335 000 Дж/кг - удельная теплота плавления льда, c = 4200 Дж/К/кг - удельная теплоемкость воды (по условию, кусок льда растал, поэтому до 20 С мы нагреваем уже воду) . С этого уравнения нам нужно извлечь масу куска льда. Q1 = m * (L + c*T2); m = Q1 / (L + c*T2); m = 100 000 / (335 000 + 4200 * 20) = 100 / 419 =~ 0.24 (кг) (единици соблюдены правильно) . Проверим, можно ли растопить кусок льда такой массы теплотой Q2. m * L = 335 000 Дж/кг * (100 / 419) кг = 79 952 Дж =~ 80 КДж. Как видим, теплоты Q2 будет недостаточно, так как Q2 = 75 КДж < 80 КДж, а это значит, что растанет не весь лед, поэтому внутри калориметра будет и лед, и вода, а температура останется прежней - 0 градусов по Цельсию. Сколько будет льда и воды или их отношение - это уже другой вопрос.
Практическое занятие № 2
Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
м = 10-4 мм.
ответ: м = 10-4 мм.
Объяснение:
Надеюсь это тебе решить задачу
Что же нам известно?
T1 = 0 C;
T2 = 20 C;
Q1 = 100 000 Дж;
Q2 = 75 000 Дж;
T3 - ?
Составим уравнение теплового баланса для проделаного експеримента. Обозначим массу куска льда m.
Q1 = L*m + c*m*(T2-T1);
где L = 335 000 Дж/кг - удельная теплота плавления льда,
c = 4200 Дж/К/кг - удельная теплоемкость воды (по условию, кусок льда растал, поэтому до 20 С мы нагреваем уже воду) .
С этого уравнения нам нужно извлечь масу куска льда.
Q1 = m * (L + c*T2);
m = Q1 / (L + c*T2);
m = 100 000 / (335 000 + 4200 * 20) = 100 / 419 =~ 0.24 (кг) (единици соблюдены правильно) .
Проверим, можно ли растопить кусок льда такой массы теплотой Q2.
m * L = 335 000 Дж/кг * (100 / 419) кг = 79 952 Дж =~ 80 КДж.
Как видим, теплоты Q2 будет недостаточно, так как Q2 = 75 КДж < 80 КДж, а это значит, что растанет не весь лед, поэтому внутри калориметра будет и лед, и вода, а температура останется прежней - 0 градусов по Цельсию.
Сколько будет льда и воды или их отношение - это уже другой вопрос.