Атомный ледокол, развивая среднюю мощность 32,4 МВт во льдах 36 км за 5 ч. Определите среднюю силу сопротивления движению ледокола. Мощность ледокола Вт Скорость ледокола км/ч Скорость ледокола м/с Сила сопротивления H. Сила сопротивления МН
Пе́рша космі́чна шви́дкість або орбітальна швидкість — швидкість, яку, нехтуючи опором повітря та обертанням планети, необхідно надати тілу для переміщення його на кругову орбіту, радіус якої рівний радіусу планети. Або ще кажуть, що це швидкість, за якої космічний апарат стає штучним супутником небесного тіла.[1]
Поняття першої космічної швидкості є досить теоретичним, оскільки реальні кораблі мають свій власний двигун і, крім того, використовують обертання Землі.
Для обчислення першої космічної швидкості необхідно розглянути рівність відцентрової сили та сили тяжіння, що діють на тіло на орбіті.
Де {\displaystyle m}m — маса снаряду, {\displaystyle M}M — маса планети, {\displaystyle G}G — гравітаційна стала (6,67259·10−11 м3 кг-1 с-2), {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!}— перша космічна швидкість, {\displaystyle R}R — радіус планети.
Першу космічну швидкість можна визначити через прискорення вільного падіння — оскільки {\textstyle g=G{\frac {M}{R^{2{\textstyle g=G{\frac {M}{R^{2, то
Першою космічною швидкістю {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!} називають швидкість польоту по коловій орбіті радіуса, що дорівнює радіусу земної кулі {\displaystyle R}RЗ. Записавши для такого колового руху другий закон Ньютона отримаємо: {\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9}{\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9} км/с.
Перша космічна швидкість більша для більших за Землю планет і менша, відповідно, — для менших. Так, наприклад, для Місяця перша космічна швидкість складає лише 1,68 км/с. Для невеликих астероїдів перша космічна швидкість настільки мала, що її можна досягнути просто відштовнувшись ногами від поверхні.
Слушай, здесь работает закон сохранения энергии( импульсов) т.е. импульс сил в начала равен импульсу сил в конце из этого следует (обозначу с цифрой 1- чел, с цифрой 2- тележка) в начале m1v1+m2v2= изменению импульса ( u- скорость после) m1u1+m2u2 разберём формулу, значит, m2v2 - тележка неподвижна в начале, то это значение =0 m1u1 = 0 т.к. чел выпрыгнул и остановился, его скорость была только в начале, когда только прыгал то получаем формулу m1v1=m2u2 => v1= m2u2/m1 => v1= 30*4/60=2 м/с и ВСЁ!
Пе́рша космі́чна шви́дкість або орбітальна швидкість — швидкість, яку, нехтуючи опором повітря та обертанням планети, необхідно надати тілу для переміщення його на кругову орбіту, радіус якої рівний радіусу планети. Або ще кажуть, що це швидкість, за якої космічний апарат стає штучним супутником небесного тіла.[1]
Поняття першої космічної швидкості є досить теоретичним, оскільки реальні кораблі мають свій власний двигун і, крім того, використовують обертання Землі.
Для обчислення першої космічної швидкості необхідно розглянути рівність відцентрової сили та сили тяжіння, що діють на тіло на орбіті.
{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2;
{\displaystyle v_{1}={\sqrt {G{\frac {M}{R{\displaystyle v_{1}={\sqrt {G{\frac {M}{R;
Де {\displaystyle m}m — маса снаряду, {\displaystyle M}M — маса планети, {\displaystyle G}G — гравітаційна стала (6,67259·10−11 м3 кг-1 с-2), {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!}— перша космічна швидкість, {\displaystyle R}R — радіус планети.
Першу космічну швидкість можна визначити через прискорення вільного падіння — оскільки {\textstyle g=G{\frac {M}{R^{2{\textstyle g=G{\frac {M}{R^{2, то
{\displaystyle v_{1}={\sqrt {gR}}}{\displaystyle v_{1}={\sqrt {gR}}}.
Першою космічною швидкістю {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!} називають швидкість польоту по коловій орбіті радіуса, що дорівнює радіусу земної кулі {\displaystyle R}RЗ. Записавши для такого колового руху другий закон Ньютона отримаємо: {\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9}{\displaystyle v_{1}={\sqrt {gR}}\approx 7{,}9} км/с.
Перша космічна швидкість більша для більших за Землю планет і менша, відповідно, — для менших. Так, наприклад, для Місяця перша космічна швидкість складає лише 1,68 км/с. Для невеликих астероїдів перша космічна швидкість настільки мала, що її можна досягнути просто відштовнувшись ногами від поверхні.
Объяснение:
т.е. импульс сил в начала равен импульсу сил в конце из этого следует
(обозначу с цифрой 1- чел, с цифрой 2- тележка)
в начале m1v1+m2v2= изменению импульса ( u- скорость после) m1u1+m2u2
разберём формулу, значит, m2v2 - тележка неподвижна в начале, то это значение =0
m1u1 = 0 т.к. чел выпрыгнул и остановился, его скорость была только в начале, когда только прыгал
то получаем формулу m1v1=m2u2 => v1= m2u2/m1 => v1= 30*4/60=2 м/с и ВСЁ!