1) Абсолютная звездная величина цефеид определяется по формуле: M = - 1,25 - 3,001*lg5 = - 3,35^m с другой стороны M = m + 5 - 5*lg(r)? r - расстояние до цефеиды в парсеках (пк) - 3,35 = 15 + 5 - 5*lg(r) lg(r) = (15 + 5 + 3,35) / 5 = 23,35 / = 4,67 r = 10^4,67 = 46774 пк
2) P = 0,12/√ρ = P - период пульсации цефеиды (в сутках) ρ - средняя плотность цефеиды (в единицах средней плотности Солнца) = 1408 кг/м³ ρ = 0,0144 / Р² = 0,0144/20² = 3,6*10⁵*1408 кг/м³ ≈ 5,07*10⁻² кг/м³
3) Видимая звездная величина Солнца m = - 26,8^m r = 1 а. е. = 1/206265 пк M = m + 5 - 5*lg(r) = - 26,8 + 5 - 5*lg(1/206265) = - 26,8 + 5 + 26,6 = = 4,8^m
4) υ = S / t = 150000000 км / (3*24*3600 с ) = 579 км/с
длина волны, скорость волны, период колебаний, частота колебаний.
Объяснение:
Кроме скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. ИЛИ Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.
Она равна расстоянию между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разрежениями в продольной волне.
Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней: λ=υT. Так как период Т и частота v связаны соотношением T = 1 / v, то скорость волны:
υ = λ / Т = λ v
Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.
Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.
Скорость упругой волны тем больше, чем плотнее среда и чем выше температура.
M = - 1,25 - 3,001*lg5 = - 3,35^m
с другой стороны
M = m + 5 - 5*lg(r)? r - расстояние до цефеиды в парсеках (пк)
- 3,35 = 15 + 5 - 5*lg(r)
lg(r) = (15 + 5 + 3,35) / 5 = 23,35 / = 4,67
r = 10^4,67 = 46774 пк
2) P = 0,12/√ρ =
P - период пульсации цефеиды (в сутках)
ρ - средняя плотность цефеиды (в единицах средней плотности Солнца) = 1408 кг/м³
ρ = 0,0144 / Р² = 0,0144/20² = 3,6*10⁵*1408 кг/м³ ≈ 5,07*10⁻² кг/м³
3) Видимая звездная величина Солнца m = - 26,8^m
r = 1 а. е. = 1/206265 пк
M = m + 5 - 5*lg(r) = - 26,8 + 5 - 5*lg(1/206265) = - 26,8 + 5 + 26,6 =
= 4,8^m
4) υ = S / t = 150000000 км / (3*24*3600 с ) = 579 км/с
Величины, характеризующие волну:
длина волны, скорость волны, период колебаний, частота колебаний.
Объяснение:
Кроме скорости, важной характеристикой волны является длина волны. Длиной волны называется расстояние, на которое распространяется волна за время, равное периоду колебаний в ней. ИЛИ Расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах, называется длиной волны.
Она равна расстоянию между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разрежениями в продольной волне.
Поскольку скорость волны - величина постоянная (для данной среды), то пройденное волной расстояние равно произведению скорости на время ее распространения. Таким образом, чтобы найти длину волны, надо скорость волны умножить на период колебаний в ней: λ=υT. Так как период Т и частота v связаны соотношением T = 1 / v, то скорость волны:
υ = λ / Т = λ v
Полученная формула показывает, что скорость волны равна произведению длины волны на частоту колебаний в ней.
Частота колебаний в волне совпадает с частотой колебаний источника (так как колебания частиц среды являются вынужденными) и не зависит от свойств среды, в которой распространяется волна. При переходе волны из одной среды в другую ее частота не изменяется, меняются лишь скорость и длина волны.
Скорость упругой волны тем больше, чем плотнее среда и чем выше температура.