Автомобиль проехал половину пути со скоростью 60 км/ч, половину оставшегося времени со скоростью 15 км/ а последний участок — со скорость 45 км/ч. Какова средняя скорость автомобиля на всем пути? (Если что нужно решить две задачи с фото, полностью оформленной задачей)
• дабы облегчить дальнейшие расчеты, сразу вычислим значение косинуса угла наклона плоскости к горизонтали:
○ cosα = √(1-0.1²) ≈ 0.994
• напишем уравнения динамики в проекции на ось, направленную вдоль плоскости и сонаправленную с ускорением автомобиля и прицепа (к слову, они равны, так как допускаем, что трос нерастяжимый; силы натяжения равны по 3 закону Ньютона)
○ Fтр - T - m1gsinα = m1a ○ T - m2gsinα = m2a
• сила трения равна по закону Кулона-Амонтона Fтр = u N = u m1gcosα. учитывая это, складываем уравнения:
○ m1g (u cosα - sinα) - m2gsinα = a (m1 + m2)
○ a = (g (m1 (u cosα - sinα) - m2sinα))/(m1 + m2)
• чтобы не допустить в дальнейшем вычислительной ошибки, посчитаем ускорение отдельно:
1502 м
Объяснение:
Поскольку сопротивлением воздуха можно пренебречь, на тело действует только сила тяжести.
Рассмотрим вертикальный и горизонтальный полет отдельно.
Вертикальное движение мяча является равноускоренным с ускорением g.
Горизонтальное движение является равномерным.
Начальная вертикальная скорость:
Начальная горизонтальная скорость:
Полет заканчивается, когда мяч падает на землю.
Найдем время полета:
Получаем обычное квадратное уравнение. Решая его, при условии что получаем
За это время горизонтально мяч пролетит
• дабы облегчить дальнейшие расчеты, сразу вычислим значение косинуса угла наклона плоскости к горизонтали:
○ cosα = √(1-0.1²) ≈ 0.994
• напишем уравнения динамики в проекции на ось, направленную вдоль плоскости и сонаправленную с ускорением автомобиля и прицепа (к слову, они равны, так как допускаем, что трос нерастяжимый; силы натяжения равны по 3 закону Ньютона)
○ Fтр - T - m1gsinα = m1a
○ T - m2gsinα = m2a
• сила трения равна по закону Кулона-Амонтона Fтр = u N = u m1gcosα. учитывая это, складываем уравнения:
○ m1g (u cosα - sinα) - m2gsinα = a (m1 + m2)
○ a = (g (m1 (u cosα - sinα) - m2sinα))/(m1 + m2)
• чтобы не допустить в дальнейшем вычислительной ошибки, посчитаем ускорение отдельно:
○ a ≈ 0.6 м/c²
• из уравнения динамики для прицепа получаем:
○ T = m2 (g sinα + a) = 1600 H