Азот массой т = 300 г, находится в сосуде объемом V = 0,5 л при температуре t = 27 °С. Можно ли считать азот в таком состоянии идеальным газом или нет?
\(L=300\) м, \(S_1=2t+2,5t^2\), \(S_2=3t\), \(S_1(\tau)-?\)
Решение задачи:
Если тела движутся из двух разных точек A и B, причем навстречу друг другу, то сумма пройденных ими путей за время \(\tau\) до встречи равна расстоянию между этими точками \(L\), то есть:
S1(τ)+S2(τ)=L 2τ+2,5τ2+3τ=300 Решим это квадратное уравнение для нахождения времени до встречи: 2,5τ2+5τ–300=0 τ2+2τ–120=0 D=4+4⋅120=484 τ=–2±222 [τ=–12сτ=10с
Время не может быть отрицательным, поэтому откидываем первый корень. Для того, чтобы найти S1(τ) подставим найденное время в уравнение движения первого тела. S1(10)=2⋅10+2,5⋅102=270м ответ: 270 м.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет p1 = m * u * корень(2)/2, а обоих вместе взятых p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу p0 = 2m v = p2 = mu*корень(2) сократим массу 2v = u*корень(2) u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.
Дано:
\(L=300\) м, \(S_1=2t+2,5t^2\), \(S_2=3t\), \(S_1(\tau)-?\)
Решение задачи:
Если тела движутся из двух разных точек A и B, причем навстречу друг другу, то сумма пройденных ими путей за время \(\tau\) до встречи равна расстоянию между этими точками \(L\), то есть:
S1(τ)+S2(τ)=L 2τ+2,5τ2+3τ=300 Решим это квадратное уравнение для нахождения времени до встречи: 2,5τ2+5τ–300=0 τ2+2τ–120=0 D=4+4⋅120=484 τ=–2±222 [τ=–12сτ=10с
Время не может быть отрицательным, поэтому откидываем первый корень. Для того, чтобы найти S1(τ) подставим найденное время в уравнение движения первого тела. S1(10)=2⋅10+2,5⋅102=270м ответ: 270 м.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет
u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет
p1 = m * u * корень(2)/2, а обоих вместе взятых
p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу
p0 = 2m v = p2 = mu*корень(2)
сократим массу
2v = u*корень(2)
u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.