q = 5*10^-4cos(10^3πt), С= 10 пФ = 10*10^-12 Ф. 1.Найдите: А) Амплитуду колебаний заряда. В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл. Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c. В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц. Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени: Из формулы емкости конденсатора С=q/U имеем u(t) = q(t)/C = (5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A. Значит i(t) =1,57cos(10^3πt+π/2).
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).
ответ: π/5 Гц
Объяснение:
Дано:
v(r) = 3 м/с
x = 10 см = 0,1 м
v(x) = 2 м/с
f - ?
Мы знаем что
v(r) = ( 2πr )/T
Где r - радиус окружности вращающегося диска
Т - период вращения диска
Тогда Т.к. f = 1/T
v(r) = 2πrf (1)
Аналогично для точки вращающейся на 10 см ближе к оси вращения
v(x) = 2π( r - x )f (2)
Отсюда составляем систему уравнений
v(r) = 2πrf
v(x) = 2π( r - x )f
Делим уравнение (1) на уравнение (2)
v(r)/v(x) = r/( r - x )
v(x)r = v(r)( r - x )
v(r)r - v(r)x = v(x)r
r( v(r) - v(x) ) = v(r)x
r = ( v(r)x )/( v(r) - v(x) )
r = ( 3 * 0,1 )/( 3 - 2 ) = 0,3 м
Отсюда подставляем радиус окружности вращающегося диска
В уравнение (1)
v(r) = 2πrf
f = v(r)/( 2πr )
f = 3/( 2π * 0,3 ) = π/5 Гц ≈ 1,6 Гц