Частица совершает гармонические колебания с частотой 0,5 Гц, амплитудой 0,6 м, и начальной фазой колебаний, равной нулю. Уравнение, описывающее колебания этой частицы, имеет вид:
Пружинные весы покажут вес тела P в воде. Вес тела в воде P равен разности силы тяжести Fт, действущей на тело, и силы Архимеда Fа (выталкивающей силы): P = Fт - Fа
Сила тяжести: Fт = m*g, где массу тела m можно выразить через объём тела V и его плотность ρ: Fт = ρ*V*g
Сила Архимеда: Fа = ρв*V*g, где ρв = 1000 кг/м³ – плотность воды.
Тогда пружинные весы покажут: P = ρ*V*g - ρв*V*g P = (ρ - ρв)*V*g P = (7800 кг/м³ - 1000 кг/м³) * 100 см³ * 10 Н/кг P = (7800 кг/м³ - 1000 кг/м³) * 10^(-4) м³ * 10 Н/кг P = (7800 кг/м³ - 1000 кг/м³) * 10^(-4) м³ * 10 Н/кг P = 6,8 Н.
1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL: Mdt = d(Jω) или Mdt = dL Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt) Jdω = d(Jω) – изменение момента импульса тела, Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью ω = dφ/dt (измеряется в рад/с) и угловым ускорением ε = d²φ/dt² (измеряется в рад/с²). При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени: f = 1/T = ω/2 Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде: E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: =∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему. Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю. Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается. В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке. Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной. Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной. (Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
P = Fт - Fа
Сила тяжести:
Fт = m*g,
где массу тела m можно выразить через объём тела V и его плотность ρ:
Fт = ρ*V*g
Сила Архимеда:
Fа = ρв*V*g,
где ρв = 1000 кг/м³ – плотность воды.
Тогда пружинные весы покажут:
P = ρ*V*g - ρв*V*g
P = (ρ - ρв)*V*g
P = (7800 кг/м³ - 1000 кг/м³) * 100 см³ * 10 Н/кг
P = (7800 кг/м³ - 1000 кг/м³) * 10^(-4) м³ * 10 Н/кг
P = (7800 кг/м³ - 1000 кг/м³) * 10^(-4) м³ * 10 Н/кг
P = 6,8 Н.
Mdt = d(Jω) или Mdt = dL
Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью
ω = dφ/dt (измеряется в рад/с)
и угловым ускорением
ε = d²φ/dt² (измеряется в рад/с²).
При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени:
f = 1/T = ω/2
Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением
T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела
ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:
E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
=∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)