Гармоническими колебаниями называются колебания, которые описываются формулой , (1) где - координата колеблющейся точки, - амплитуда колебаний, - циклическая частота, - период колебаний, - начальная фаза. Гармонические колебания совершает, например, маятник при малых амплитудах. Формула (1) является решением дифференциального уравнения , (2) в чем нетрудно убедиться, вычислив вторую производную от функции и подставив ее в дифференциальное уравнение (2). Амплитуда колебаний и начальная фаза определяются начальными условиями: координатой и скоростью материальной точки в начальный момент времени. Некоторые физические задачи сводятся к сложению колебаний. Если суммируются колебания с одинаковыми частотами, то результирующие колебания происходят с той же частотой, а их амплитуда и начальная фаза могут быть найдены, например, с метода векторных диаграмм. При сложении колебаний с разными частотами возникает сложный, в общем случае, непериодический процесс. Если частоты и складываемых колебаний близки по величине (, где ), то результирующие колебания имеют характер биений – так называют колебания с пульсирующей амплитудой (рис.1). В качестве примера найдем сумму двух колебаний с одинаковыми амплитудами, начальными фазами, равными нулю, и близкими частотами: