Человек хочет поднять флаг. Мачта 3 метра весом 2 кг прикреплена к стене и наклонена на 70 градусов. Для безопасности этот человек привязал мачту верёвкой, которая удерживает мачту под углом 50 градусов от стены. Эта верёвка зафиксирована на 2/3 длины мачты. 1)зная что максимальное натяжение этой верёвки 10 N, какая может быть максимальная масса флага. 2) какая реакция стены на мачту?
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па
m = 800 т = 8*10⁵ кг
t = 0,5 мин = 30 с
v = 36 км/ч = 10 м/с
v₀ = 0
μ = 0,1
<N> - ?
Запишем 2 закон Ньютона в векторной форме
Fт + mg + N + Fтр = ma - над всеми слагаемыми пишем вектора
Теперь тот же закон в проекциях на координатные оси
OX : Fт - Fтр + mgx = max
OY : N - mgy = 0
N = mgy = mg*cos(α)
Fтр = μ*N = μmg*cos(α)
mgx = mg*sin(α)
ax = a = (v - v₀)/t = 10 м/с / 30 с = 0,33 м/с²
Fт - μmg*cos(α) + mg*sin(α) = ma
Fт = ma + μmg*cos(α) - mg*sin(α)
Fт = m(a + μg*cos(α) - g*sin(α))
Fт = 8*10⁵ кг * (0,33 м/с² + 0,1 * 10 м/с² * cos(5°) - 10 м/с² * sin(5°)) = 8*10⁵ кг * ( 0,33 м/с² + 0,996 м/с² - 0,872 м/с²) = 8*10⁵ кг * 0,454 м/с² = 3,6*10⁵ Н
<v> = (v + v₀) / 2 = (10 м/с + 0) / 2 = 5 м/с
<N> = Fт * <v> = 3,6*10⁵ Н * 5 м/с = 1,8*10⁶ Вт = 1,8 МВт