Чем может быть обусловлено отклонение измеренной величины показателя степени температуры N в законе Стефана-Больцмана теплового излучения твердых тел для материала нити накаливания (вольфрам)
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
Лед получим тепло от медного тела, при эотм часть льда расплавилась, и еще осталось твердым 2,8 кг .Выразим массу расплавившегося льда m1=m - 2,8 ( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0 (Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1). Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) . Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.
Со скоростью - все верно: v = v₀ + at
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
s₁ = 1 · 1 + 0,5 · 1 : 2 = 1,25 (м)
( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0
(Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1).
Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) .
Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и
решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.