В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
rayyana14
rayyana14
21.05.2022 22:17 •  Физика

Чему равен диапазон температур поверхности
звезды, если максимум излучения приходится на длины
волн в промежутке от 280 нм до 300 нм?

Показать ответ
Ответ:
lexelol2005
lexelol2005
08.03.2022 20:49
В любом положениии жука, по графику, мы можем найти соответствующую его положению скорость. Пусть расстояние между

делениями равно    x \ ,    тогда мы можем выразить время, которое тратит жук на прохождение расстояния между

каждой парой делений:

t_{01} = \frac{x}{3} \ ;

t_{12} = \frac{x}{4} \ ;

t_{23} = \frac{x}{1} \ ;

t_{34} = \frac{x}{4} \ ;

t_{45} = \frac{x}{2} \ ;

t_{56} = \frac{x}{1} \ ;

t_{67} = \frac{x}{3} \ ;

t_{78} = \frac{x}{1} \ ;

t_{89} = \frac{x}{3} \ ;

Жук, как мы понимаем, сделал 4 остановки: после 2-ого, 4-ого, 6-ого и 8-ого делений на 1.5 секунды.

Значит полное время, которое он затратил на прохождение линейки равно:

t = t_{01} + t_{12} + 1.5 + t_{23} + t_{34} + 1.5 + t_{45} + t_{56} + 1.5 + t_{67} + t_{78} + 1.5 + t_{89} = \\\\ = \\\frac{x}{3} + \frac{x}{4} + 1.5 + \frac{x}{1} + \frac{x}{4} + 1.5 + \frac{x}{2} + \frac{x}{1} + 1.5 + \frac{x}{3} + \frac\\{x}{1} + 1.5 + \frac{x}{3} = \\\\ = ( 1.5 + 1.5 + 1.5 + 1.5 ) + ( \frac{x}{3} + \frac{x}{3} + \frac{x}{3} ) + ( \frac{x}\\{4} + \frac{x}{4} + \frac{x}{2} ) + x + x + x = \\\\ = 4 \cdot 1.5 + 3 \cdot \frac{x}{3} + ( \frac{x}{2} + \frac{x}{2} ) + \\3x = 6 + x + x + 3x = 6 + 5x \ ;

t = 6 + 5x \ ;

Поскольку нам дана средняя скорость,
то мы можем определить длину L линейки Глюка, как:

L = t \cdot v_{cp} = ( 6 + 5x ) \cdot 1 = 6 + 5x \ ;

Но с другой стороны, длина линейки Глюка, очевидно, равна    9x \ ,    поскольку мы изначальнго определили    

x \ ,    как цену деления линейки Глюка. Стало быть:

L = 6 + 5x = 9x \ ;

6 = 4x \ ;

x = 1.5   см

ответ: 1.5 см.

Экспериментатор глюк сконструировал необычную линейку. он взял плоский кусок деревянной доски и нанё
Экспериментатор глюк сконструировал необычную линейку. он взял плоский кусок деревянной доски и нанё
0,0(0 оценок)
Ответ:
trototil
trototil
21.02.2023 10:26

Суммирующая машина Паска́ля, «Паскали́на» (фр. Pascaline) — арифметическая машина, изобретённая французским учёным Блезом Паскалем (1623—1662) в 1642 году.

История

Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 году в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа колесики прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9 999 999. ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось при дополнений до девятки, которые для считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.

Несмотря на преимущества автоматических вычислений, использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су и денье. В ливре насчитывалось 20 су, в су — 12 денье. Использование десятичной системы в недесятичных финансовых расчётах усложняло и без того нелёгкий процесс вычислений.

Тем не менее примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда (нем. Wilhelm Schickard), созданных в 1623 году.

Переход Франции в 1799 году на метрическую систему коснулся также её денежной системы, которая стала, наконец, десятичной. Однако практически до начала XIX века создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Шарль Ксавье Тома де Кольмар запатентовал первый механический калькулятор, ставший коммерчески успешным.

Объяснение: почаще заглядывай на вики)

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота