Чему равен поток вектора напряженности электрического поля через сферическую поверхность в вакууме, внутри которой содержатся два тела с + q1 и (– q2)?
Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.
Существует функция состояния - энтропия S, которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.
Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2S < 0).
Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:
, (4.3)
где знак равенства ставится, если весь цикл полностью обратим.
Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:
, (4.4)
где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.
С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:
, (4.5)
где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.
Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:
. (4.6)
Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:
Qобр = TdS, (4.7)
где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.
Расчет изменения энтропии для различных процессов
Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:
(4.8)
Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).
1) Нагревание или охлаждение при постоянном давлении.
Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости: Qобр = Cp dT.
(4.9)
Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2: а) обратимо; б) против внешнего давления p.
1). фотон безмассовая частица, m = 0 2). Запишем уравнение Эйнштейна для фотоэффекта hc/λ = hc/λmax + Ek λ = 70 нм = 7,0*10⁻⁸ м λmax = 300 нм = 3,0*10⁻⁷ м Ek - максимальная кинетическая энергия фотоэлектронов Ek = hc/λ - hc/λmax = hc*((λmax - λ)/(λmax*λ)) Электрон обладая энергией удалится от фотокатода на расстояние d и при этом будет тормозиться электрическим полем фотокатода Ek = e*U = e*E*d U - задерживающая разность потенциалов E = 8,0 В/см = 800 В/м - напряженность электрического поля (поле однородно, поле плоскости) hc*((λmax - λ)/(λmax*λ)) = e*E*d d = hc*((λmax - λ)/(λmax*λ)) / (e*E) d = 6,62*10⁻³⁴ Дж*с*3*10⁸ м/с*((3,0*10⁻⁷ м - 0,7*10⁻⁷ м)/(3,0*10⁻⁷ м * 0,7*10⁻⁷ м)) / (1,6*10⁻¹⁹ Кл*800 В/м) ≈ 1,7*10⁻² м = 1,7 см
Объяснение:
Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.
Существует функция состояния - энтропия S, которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.
Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2S < 0).
Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:
, (4.3)
где знак равенства ставится, если весь цикл полностью обратим.
Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:
, (4.4)
где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.
С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:
, (4.5)
где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.
Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:
. (4.6)
Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:
Qобр = TdS, (4.7)
где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.
Расчет изменения энтропии для различных процессов
Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:
(4.8)
Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).
1) Нагревание или охлаждение при постоянном давлении.
Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости: Qобр = Cp dT.
(4.9)
Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2: а) обратимо; б) против внешнего давления p.
2). Запишем уравнение Эйнштейна для фотоэффекта
hc/λ = hc/λmax + Ek
λ = 70 нм = 7,0*10⁻⁸ м
λmax = 300 нм = 3,0*10⁻⁷ м
Ek - максимальная кинетическая энергия фотоэлектронов
Ek = hc/λ - hc/λmax = hc*((λmax - λ)/(λmax*λ))
Электрон обладая энергией удалится от фотокатода на расстояние d и при этом будет тормозиться электрическим полем фотокатода
Ek = e*U = e*E*d
U - задерживающая разность потенциалов
E = 8,0 В/см = 800 В/м - напряженность электрического поля (поле однородно, поле плоскости)
hc*((λmax - λ)/(λmax*λ)) = e*E*d
d = hc*((λmax - λ)/(λmax*λ)) / (e*E)
d = 6,62*10⁻³⁴ Дж*с*3*10⁸ м/с*((3,0*10⁻⁷ м - 0,7*10⁻⁷ м)/(3,0*10⁻⁷ м * 0,7*10⁻⁷ м)) / (1,6*10⁻¹⁹ Кл*800 В/м) ≈ 1,7*10⁻² м = 1,7 см