Шарик массой m1=34г, имеющий кинетическую энергию к=56дж налетает на покоящийся шар массой m2=164г. с какой скоростью будут двигаться шары после абсолютного столкновения? ответ в метрах в секунду, 3 знака после запятой. вот так я решал: к=(m1*v^2 )/2 v^2=(k*2)/m1 v=корень((k*2)/m1) v=корень((56*2)/34)=1.815 получили скорость шара n1 до столкновения. в результате абсолютно удара (слипания) частицы движутся с одинаковой скоростью . по закону сохранения импульса m1*v=(m1+m2)*u,по закону сохранения энергии (m1*v^2)/2=(m1+m2)*u^2/2/ отсюда я нашел: mv=(m1+m2)*u, 34*1.815=(34+164)*u 61.71 =198*u u=61.71/198 u=0.327 надо перевести в килограммы. ответ 9,86 м/с
P = n k M V^2 / 3R => n = 3 R P / k M V^2 = 3*8,31*10^4 / 1,38*10^-23*2*10^-3*64*10^4=24,93*10^4 / 176,64*10^-22 = 0,141*10^26 мол-л/м^3
2. n = N / V; N = m / m0; m0 = M / Na
n = p Na / M = 0,13*6*10^23 / 32*10^-3 = 0,0243*10^26 мол-л/м^3
3. Ek=3/2 * k T; V^2= 3RT / M => T = M V^2 / 3R
Ek = 1,5 k M V^2 / 3R = 1,5*1,38*10^-23*32*10^-3*25*10^4 / 3*8,31 = 1656*10^-22 / 24,93 = 66,425*10^-22 Дж
4. P = 2/3 * Ek n = 2*5*10^-23*16*10^25 / 3 = 53,3*10^2 Па